Main 0

The multiplier setting determines the format of the data being transferred. This will apply to all 4 byte parameters and weight readings. The roc multiplier will effect only the roc value.

If the multiplier is set to 0, then all 4 byte parameters will be in IEEE floating point format.

If the multiplier is set to any non-zero value, then all 4 byte parameters will be in integer format. The module will multiply the value by the multiplier and will transfer the integer portion of this result. The user would then receive the value and divide by the multiplier to get the real value. The reason to use a multiplier would normally be to get decimal point resolution in integer format. So if the multiplier is set to 100, then this effectively moves the decimal point two positions to the right, so the module would transfer data with two decimal point resolution. Dividing by the multiplier and placing the result in a float register, would then place the decimal point back into the value.

This rung will set the multiplier on first scan. It also gives the user the ability to change the multiplier during operation. If the user turns on bit b3:0/14, it will write the new multiplier to the output table. After writing this new value, it will clear the trigger bit, so it will not continuously write the value (although this would not do any harm).

Main 1

This rung will trigger the routine to write the parameters to the module.

Main 2

This rung will start the routine to do a C2 calibration. Calibration cannot run if the module has an A/D conversion error or failure, or if the scale is in motion. So the jump to this subroutine is preceded with a check for these error conditions. If an error condition is present, the routine will not start.

Prior to running this routine, the user should insure the CalLow Weight parameter is set properly and the weight on the scale is the reference weight for this step in the calibration.

Main 3

This rung will start the routine to do the Cal Low Cmd of a Traditional calibration. Calibration cannot run if the module has an A/D conversion error or failure, or if the scale is in motion. So the jump to this subroutine is preceded with a check for these error conditions. If an error condition is present, the routine will not start.

Prior to running this routine, the user should insure the CalLow Weight parameter is set properly and the weight on the scale is the reference weight for this step in the calibration.

Main 4

This rung will start the routine to do the Cal HI Cmd of a Traditional calibration. Calibration cannot run if the module has an A/D conversion error or failure, or if the scale is in motion. So the jump to this subroutine is preceded with a check for these error conditions. If an error condition is present, the routine will not start.

Prior to running this routine, the user should insure the SPAN Weight parameter is set properly and the weight on the scale is the reference weight for this step in the calibration.

Main 5

This rung will start the routine to do the save cmd. This will save the settings and calibration to non-volatile memory. The SAVE cannot run if the module has a NON-VOLATILE RAM FAILURE. So the jump to this subroutine is preceded with a check for this error condition. If the error condition is present, the routine will not start.

Main 6

This starts the routine to tare the net weight. This command cannot run if the module has an A/D conversion error or failure, or if the scale is in motion. So the jump to this subroutine is preceded with a check for these error conditions. If an error condition is present, the routine will not start.

Main 7

This starts the routine to zero the gross weight. This command cannot run if the module has an A/D conversion error or failure, or if the scale is in motion. So the jump to this subroutine is preceded with a check for these error conditions. If an error condition is present, the routine will not start.

Main 8

This rung will trigger the routine to read the parameters from the module.

**

Setup 0

All the parameters are set up through the M files. There are two methods of setting up the parameters in the M files. One method is what I call the DIRECT SET method to directly write the parameter into the M file location. This routine shows this easy, DIRECT SET method.

The SETPARAM command also uses the M files, and will allow the user to write one parameter at a time. It is somewhat complicated to set up. If you would like more information on this method, check the manual or call Hardy service.

The list of the parameters and their word location within the M files is shown in the SETUP section of the manual. The DIRECT SET method of writing to a parameter is to copy the new value into the M file at the word location for that parameter. CAUTION: There is no error checking for the values being written directly into the module using this method. It will be up to the user to have the values in a proper range and format for the parameters being set. If you need to have error checking done on the parameter values to be written, then you need to use the SETPARAM (not shown in this example) command to write the values.

There are two types of parameters in the module. There are 4 byte (32 bit) parameters and 1 byte (8 bit) parameters.

The 1 byte parameters will always be in integer format. For this program, these parameters have been set up in data file N7 starting word 10. There are 13 of this type of parameter. Not all these parameters must have a value in them, but this program will write all 13 of these parameters.

This rung shows a copy command that will copy all 13 of these 1 byte parameters into the modules M0 file, starting at word location 52.

Setup 1

All the 4 byte parameters can have either integer or float format to them, depending on the Multiplier setting. This rung checks for the multiplier setting and if it is zero, will get the parameter data from a float register; and if the multiplier is non-zero, will get the parameter data from an integer location.

This rung will copy all 12 of the 4 byte parameters into the module. NOTE: when setting a value in integer format, each parameter will occupy 2 words of data. The order of bits is important, so the order of the two word locations are MSW ((most significant word (upper 16 bits of data)) is the first location and the LSW ((least significant word (lower 16 bits of data)) will be the second location.

Once the values are written, the trigger bit will be unlatched, turning off the routine.

C2 cal 0

C2 calibration is a method of calibrating the scale without the need for test weights. The module will read specification data from the load cells and using this data will set up the response curve of the load cell system. Knowing the response curve of the load cell and any known point on this curve, we have the calibration of the scale.

The C2 calibration command is triggered by setting bit #7 of the discrete table output word 14. This will start the calibration process. Depending on the configuration of your system and type of summing box, this command could take up to 20 seconds to complete. Completion of the command will be checked in the next rung. When the command is triggered, the module will take the current input from the scale and “assign” the CalLowWeight value to this input level. This is the known point on the response curve.

This rung will also clear the bit set up as an error flag (B3:0/0). If this error flag is on, the command failed. Here we will run a one shot to clear any error indication from a previous command.

C2 cal 1

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table will be used. This bit will only be valid while you program still has command bit turned on in output word 14 and the echo is present in the input word 14.

If the error bit is on, then the command failed and we turn on the error flag bit. Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

C2 cal 2

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the command bit in output word 14 that started the calibration, will clear the bit allowing this subroutine to run and clear the control bit for this cleanup.

Cal Low 0

Traditional or Hard Calibration is the method of calibrating the scale where test weights are required. This method of calibration will have two points of known weight. These are normally and empty scale (0 units of weight) and span (known test weight on scale).

The Cal Low command is the first part of a traditional calibration. This is the low point, normally an empty scale. The unit will take the input signal from the scale at the time of this command and “assign” it the weight entered as the CalLowWeight parameter.

The CalLow command is triggered by setting bit #5 of the discrete table output word 14. This will start the calibration process. Depending on the configuration of your system and type of summing box, this command could take up to 20 seconds to complete. Completion of the command will be checked in the next rung.

This rung will also clear the bit set up as an error flag (B3:0/0). If this error flag is on, the command failed. Here we will run a one shot to clear any error indication from a previous command.

Cal Low 1

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table will be used. This bit will only be valid while you program still has command bit turned on in output word 14 and the echo is present in the input word 14.

If the error bit is on, then the command failed and we turn on the error flag bit. Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

Cal Low 2

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the command bit in output word 14 that started the calibration, will clear the bit allowing this subroutine to run and clear the control bit for this cleanup.

CalHigh 0

Traditional or Hard Calibration is the method of calibrating the scale where test weights are required. This method of calibration will have two points of known weight. These are normally and empty scale (0 units of weight) and span (known test weight on scale).

The Cal High command is the second part of a traditional calibration. This is the high point, with a known test weight on the scale. This test weight needs to be equal to the Span parameter entry set into the unit. The unit will take the input signal from the scale at the time of this command and “assign” it the weight entered as the Span Weight parameter.

The Calhigh command is triggered by setting bit #6 of the discrete table output word 14. This will start the calhigh process. Completion of the command will be checked in the next rung.

This rung will also clear the bit set up as an error flag (B3:0/0). If this error flag is on, the command failed. Here we will run a one shot to clear any error indication from a previous command.

Cal High 1

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table will be used. This bit will only be valid while you program still has command bit turned on in output word 14 and the echo is present in the input word 14.

If the error bit is on, then the command failed and we turn on the error flag bit. Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

Cal High 2

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the command bit in output word 14 that started the calibration, will clear the bit allowing this subroutine to run and clear the control bit for this cleanup.

Save 0

The save command will write the setup and calibration settings to non-volatile memory in the module. Then, if the module is powered down at any time, when it powers back up, it will come back up to its previous running condition without needing to re-setup the module.

The Save command is triggered by setting bit #2 of the discrete table output word 14. This will start the save process. Completion of the command will be checked in the next rung.

This rung will also clear the bit set up as an error flag (B3:0/0). If this error flag is on, the command failed. Here we will run a one shot to clear any error indication from a previous command.

Save 1

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table will be used. This bit will only be valid while you program still has command bit turned on in output word 14 and the echo is present in the input word 14.

If the error bit is on, then the command failed and we turn on the error flag bit. Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

Save 2

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the command bit in output word 14 that started the Save, will clear the bit allowing this subroutine to run and clear the control bit for this cleanup.

Tare 0

The Tare command will cause the net weight to go to zero.

The Tare command is triggered by setting bit #1 of the discrete table output word 14. This will start the Tare process. Completion of the command will be checked in the next rung.

This rung will also clear the bit set up as an error flag (B3:0/0). If this error flag is on, the command failed. Here we will run a one shot to clear any error indication from a previous command.

Tare 1

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table will be used. This bit will only be valid while you program still has command bit turned on in output word 14 and the echo is present in the input word 14.

If the error bit is on, then the command failed and we turn on the error flag bit. Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

Tare 2

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the command bit in output word 14 that started the Tare, will clear the bit allowing this subroutine to run and clear the control bit for this cleanup.

Zero 0

The Zero command will cause the Gross weight to go to zero as long as it is within the Zero Tolerance.

The Tare command is triggered by setting bit #0 of the discrete table output word 14. This will start the Zero process. Completion of the command will be checked in the next rung.

This rung will also clear the bit set up as an error flag (B3:0/0). If this error flag is on, the command failed. Here we will run a one shot to clear any error indication from a previous command.

Zero 1

When a command that was triggered using word 14 of the discrete table output word 14, discrete table input word 14 echoes the command once the module has completed running the command. The first instruction is checking for the echo of the command back. Once we get this echo back, the program will check for an error. Input word 15, bit #14 is the error bit to check for. When a command is triggered in word 14 of the output table, and you have the echo of the command in word 14 of the input table, then word 15, bit 14, of the input table will be used. This bit will only be valid while you program still has command bit turned on in output word 14 and the echo is present in the input word 14.

If the error bit is on, then the command failed and we turn on the error flag bit. Once we have the determination of pass/fail, then we start a cleanup of the control bits used to trigger the command.

Zero 2

Once the command is done and we have the determination of pass/fail, we need to clean up any control bits. This rung will remove the command bit in output word 14 that started the Zero, will clear the bit allowing this subroutine to run and clear the control bit for this cleanup.

Read 0

This routine lets the user read the parameters already set into the module. This can be done after changes have been made to check they were done correctly, or can be done prior to changes being written to the module to minimize changes actually done.

This first rung will read the single byte parameters and write the values into an integer location for the user to have available. These are the values that are not affected by the multiplier setting.

Read 1

This rung will read the 4 byte parameter values. These values are affected by the multiplier setting, so there is a check on this setting prior to actual read instruction. If the multiplier is zero, indicating float format is used, then the values will be copied into a float location.

If the multiplier is non-zero, indicating integer format is used, then the values will be copied into an integer location.

After reading the values, the control bit for this routine will be turned off.

