PROVIDING SOLUTIONS IN:[image: HardyLogo_tag_lowres_RGB]

[bookmark: a11]Process Weighing
Vibration Monitoring
Local Field Service

[bookmark: _GoBack]TECHNICAL NOTE


Things documentation should cover about using the HI 1756 WS sample code.
1. Overview
a. Explanation of the code.
2. Installing the module and code.
a. Using the AOP.
b. Single channel vs dual channel.
c. User defined data types.
d. Change to different slot.
e. Multiple modules
3. Modifying the code.
4. Using the code.
5. Troubleshooting
[bookmark: _Toc451271098]OVERVIEW
The sample code is designed to make installation and setup of the Hardy 1756-WS/2WS modules quick and easy for the user.  This document will address only the software/code side of the module, not the hardware or wiring.  This code will address:
· Quick installation using AOP
· User defined data tags.
· Sample of running every command the module has available.
· Separate subroutine for each command
· Discrete commands made simple
· Single bit in main routine to start any command.
· Check for error/failures of command
· Comments explaining each part of the code

[bookmark: _Toc451271099]INSTALLATION

The installation of the module using the Add on Profile (AOP): 

The Add on Profile gives the user the ability to set the parameters for the module in the module properties dialog box.  This will save a copy of the parameter settings in the configuration file (Local:x:C) and is saved in the PLC.  If the properties are set up to allow download (‘Copy configuration data’ box checked), each time the PLC establishes a connection to the module it will send a copy of these parameters to the module.  This allows the parameters to be set without having to write code for the module.  If for some reason the module fails, and it is replaced with another module the parameters will automatically be written to the replacement module.
During the installation of the module into the I/O configuration, the user will select either the ‘single’ channel (default) or ‘dual’ channel version of the module to install.  The differences you will see between installing a single channel or dual channel would be the configuration table.  This table will be twice as long and have parameters for both channels listed if dual channel was selected.  The Input and Output tables will be the same and have both channels data registers available, though if the module was installed as a single channel, the second channel would still work if the channel was enabled.  

1. Installing the AOP:
1.1. The module AOP should be a part of the RS Logix 5000 software if you have version 16 or later.  
1.2. If your version does not have this installed, you can find the AOP files on the Hardy Process Solutions web site to download.
1.2.1. To install the AOP:
1.2.1.1. Download the AOP file from the Hardy web site.  This is a zipped file and will need to be unzipped.
1.2.1.2. Run the MPSetup.exe file on the computer you run RS Logix 5000 on.
1.2.1.3. You should now find the HI 1756-xWS as a specialty module in the Module catalog.

2. Installing the module into the project configuration:
2.1. In the project configuration, right click on the backplane.
2.2. Select ‘New Module’ from the drop down list
2.3. Under the ‘Specialty modules’ category, find the HI 1756-xWS and select.
2.4. Click on the ‘OK’ button.  This will bring up the new module configuration window.

3. Configuring the Module in the New Module properties window (AOP):
3.1. On the ‘General’ Tab
3.1.1. Enter a name for the module.
3.1.2. Enter a description if desired (optional).
3.1.3. Enter the slot the module is installed in.
3.1.4. Select the revision and number of channels.
3.1.4.1. Click on the ‘Change…’ button.
3.1.4.1.1. Select the Revision for the module.  
3.1.4.1.1.1. If you have a Series B module, this would normally be rev. 2; however this version of the AOP will not let you make changes while online.  You can set the rev to 3, however you will also need to disable the electronic keying to prevent an error.  This will allow you make changes online.
3.1.4.1.1.2. If you have a Series C module, select rev 3 and Compatible module for the electronic keying.
3.1.4.1.2. Select the number of channels for your module.
During the installation of the module into the I/O configuration, the user will select either the ‘single’ channel (default) or ‘dual’ channel version of the module to install.  The differences you will see between installing a single channel or dual channel would be the configuration table.  This table will be twice as long and have parameters for both channels listed if dual channel was selected.  The Input and Output tables will be the same and have both channels data registers available, though if the module was installed as a single channel, the second channel would still work if the channel was enabled.
3.1.4.1.3. Click OK to accept settings.
3.2. On the ‘Connection’ tab:
3.2.1. Set the Requested packet Interval (RPI) time to at least 10 ms.
3.2.2. Check any boxes that would apply to your system and application.
3.3. On the ‘Configuration’ tab:
3.3.1. If module is set up for two channels, select channel 0.
3.3.1.1. Ensure the Enable Channel box is checked.
3.3.1.2. Ensure the Copy configuration data box is checked.
3.3.1.3. Check the Enable button Calibration if desired.
3.3.1.4. Set the parameter values as needed for your system and application.
3.3.2.  If module set for two channels, select channel 1.
3.3.2.1. Repeat steps 3.3.1.1 through 3.3.1.4 for this channel.
3.4. Click ‘OK’ to create the moduleT and all the Local I/O tables for the module.

4. If you wish to calibrate the module from the AOP properties dialog box:
If the user chooses to set the parameters, calibrate, or monitor the weight from the properties dialog boxes, the program would need to be downloaded to the processor and go online before any changed may be made.  Changes to the parameter settings will be written to the Configuration table regardless of being online/offline.  However, they will not be downloaded to the module unless program is downloaded and in run mode.

4.1. Click on the module in the projects I/O configuration and open the properties of the module.
4.2. Click on the ‘Calibration’ tab:
4.2.1. Ensure the proper channel is selected.
4.2.2. Ensure the scale is empty or the live load weight matches the Cal Low Weight parameter setting.
4.2.3. Calibration:
4.2.3.1. If a C2 calibration is desired: 
4.2.3.1.1. click on the C2 cal button.
4.2.3.1.2. Wait for the calibration complete message or error if failure occurred.
4.2.3.2. If a hard calibration is desired:
4.2.3.2.1. click on the L_HARD button to perform the low point of the hard calibration.
4.2.3.2.2. Wait for the calibration complete message or error if failure occurred.
4.2.3.2.3. Place weight on the scale to match the Span Weight setting.
4.2.3.2.4. Click on the H_HARD button to perform the high point of the hard calibration.
4.2.3.2.5. Wait for the calibration complete message or error if failure occurred.
4.2.3.3. Repeat for next channel if available.
4.3. Check your calibration.  Go to the Live Data tab.
4.3.1. Ensure the proper channel is selected.
4.3.2. Check the Gross Weight reading and verify it is correct for the weight on the scale.  
4.3.3. Change weight on the scale and verify the Gross weight reading 

5. Installing the program:
The simplest way to install a copy of the program into the users’ program is to export/import the sample.  The advantages of doing the export/import are:
 	The entire program of subroutines is copied at once.
 	All the User-Defined data types are imported.
 	All the controller tags and program tags are imported.
 	Allows user to copy code into different version of RS Logix 5000 or Studio 5000.

5.1. To export/import the program:
5.1.1. In the original sample program, right click on ‘MainProgram’ in the controller organizer.
5.1.2. Select and click on ‘export program’.
5.1.3. In the users’ program, right click on Main Task or other appropriate location to import program.
5.1.4. Select and click on ‘import program’.
5.1.5. Verify all routines, User Defined data tags, Controller tags, and Program tags imported.
5.1.6. Importing the program unfortunately does not import the path set up in any MSG instruction.  The user will need to go into each subroutine that has a MSG instruction and open the properties and set the Communication path to the module in their system.  These subroutines are:
5.1.6.1. C2_Search, Rung 0;
5.1.6.2. Read_Live_Wt, Rung 0
5.1.6.3. Read_Params, Rung 0
5.1.6.4. Run_Cmd, Rung 0
5.1.6.5. WeighSysTest, Rung 0
5.1.6.6. Write_Params, Rung 0
6. Modifying the program:
The sample program has an example of all commands available to the module.  However, some of these commands have two methods of being run and some commands require special hardware to operate.  It is also likely that a user would not need every command for their application.  

6.1. The way the program is set up, each command is in its own separate subroutine with the exception of the discrete commands.  Each of these subroutines is triggered by turning on a bit that activates a rung in the Main Routine.  Each of these is independent of each of the other subroutines and can be removed without affecting the other routines.
6.1.1. If the user wishes to remove a portion of the program:
6.1.1.1. In the Controller Organizer tree, right click on the subroutine you wish to remove.
6.1.1.2. Select ‘Delete’ from the drop down list.  This should remove the subroutine from the program.
6.1.1.3. Open the Main Routine and find the rung that was used to activate the jump to the subroutine removed.  Select the rung.
6.1.1.4. Right click and select delete to remove the rung.
6.1.1.5. Repeat for any additional subroutines you wish to remove.
6.2. The program was written to accommodate a dual channel module.  There is no harm in leaving the references to the second channel in the program, however they can also be removed simply enough.
6.2.1. If the user wishes to remove the references to the second channel:
6.2.1.1. In the Main Routine, each rung has a trigger bit for channel 0 & channel 1.
6.2.1.2. The user can delete the branch and trigger bit for Ch_1 on each of the rungs.
6.2.1.3. In each of the subroutines, the user should find each reference to ch_1 and delete the branch this is on.  These are:
6.2.1.3.1. In the C2_Cal_cmd routine: 
6.2.1.3.1.1. rung 0, third branch;
6.2.1.3.1.2. Rung 8, third branch.
6.2.1.3.2. In C2_Search routine:
6.2.1.3.2.1. Rung 1, third branch;
6.2.1.3.2.2. Rung 6, third branch.
6.2.1.3.3. In the Cal_High_cmd routine:
6.2.1.3.3.1. Rung 0, third branch;
6.2.1.3.3.2. Rung 2, third branch.
6.2.1.3.4. In the Cal_Low_cmd routine:
6.2.1.3.4.1. Rung 0, third branch;
6.2.1.3.4.2. Rung 8, third branch.
6.2.1.3.5. In the Read_Live_WT routine:
6.2.1.3.5.1. Rung 1, third branch;
6.2.1.3.5.2. Rung 4, 2nd branch.
6.2.1.3.6. In the Read_Params routine:
6.2.1.3.6.1. Rung 1, third branch;
6.2.1.3.6.2. Rung 4, 2nd branch.
6.2.1.3.7. In the Read_SN routine:
6.2.1.3.7.1. Rung 1, 4th branch;
6.2.1.3.7.2. Rung 4, 2nd branch.
6.2.1.3.8. In the Reload_cmd:
6.2.1.3.8.1. Rung 0, third branch;
6.2.1.3.8.2. Rung 2, third branch.
6.2.1.3.9. In the Save_cmd routine:
6.2.1.3.9.1. Rung 0, third branch;
6.2.1.3.9.2. Rung 2, 2nd branch.
6.2.1.3.10. In the Set_Defaults_cmd routine:
6.2.1.3.10.1. Rung 0, third branch;
6.2.1.3.10.2. Rung 2, 2nd branch.
6.2.1.3.11. In the Tare_cmd routine:
6.2.1.3.11.1. Rung 0, third branch;
6.2.1.3.11.2. Rung 2, 2nd branch.
6.2.1.3.12. In the WeighSysTest routine:
6.2.1.3.12.1. Rung 1, 4th branch;
6.2.1.3.12.2. Rung 6, third branch.
6.2.1.3.13. In the Write_Params routine:
6.2.1.3.13.1. Rung 1, third branch;
6.2.1.3.13.2. Rung 4, 2nd branch.
6.2.1.3.14. In the Zero_cmd routine:
6.2.1.3.14.1. Rung 0, third branch;
6.2.1.3.14.2. Rung 2, third branch.
6.2.1.3.15. In the DISCRETE_COMMANDS routine:
6.2.1.3.15.1. Rung 1
6.2.1.3.15.2. Rung 3
6.2.1.3.15.3. Rung 5
6.2.1.3.15.4. Rung 7
6.2.1.3.15.5. Rung 9
6.2.1.3.15.6. Rung 11
6.2.1.3.15.7. Rung 13
6.2.1.3.15.8. Rung 14, 2nd branch;
6.2.1.3.15.9. Rung 15, 2nd branch (two times) on main rung; and third and 5th branches down.
6.3. The program has two methods of running some of the commands.  These are: Zero, Tare, Write to non volatile (save), reload from non volatile (Restore), Cal Low, Cal High, C2 Cal.  These commands can be run either using a MSG instruction or through the discrete I/O tables.  
The difference between the two methods of running the commands are:
 	The MSG instruction will return an error code if the command fails.
 	The discrete method only returns a pass fail bit.
If you wish to remove either method from the program to remove reduncancy, you can remove:
6.3.1. To remove the discrete method: 
6.3.1.1. Delete the DISCRETE_COMMANDS routine; 
6.3.1.2. Delete rung 14 in the main routine that enables the subroutine.
6.3.2. To remove the MSG instruction method of running any of the listed commands, select and:
6.3.2.1. Delete subroutine for command to be removed.
6.3.2.2. Delete associated rung in the main routine that enables the subroutine deleted.
6.4. The program has subroutines that are for troubleshooting purposes and may require special equipment on the system to work properly.  Any of these routines can be removed if desired by following the above steps.  These are:
6.4.1. Require Hardy C2 load cells:
6.4.1.1. C2_Cal_cmd:  Allows user to do a C2 calibration.  
6.4.1.2. C2_Search: reports number of C2 load cells on system.
6.4.1.3. Read_SN:  Allows user to read s/n of load cells.  
6.4.2. Require Hardy Integrated Technician summing card:
6.4.2.1. WeighSysTest:  Allows user to get data from individual load cells.  
7. 
8. 

 
9. User Defined Data Type (UDT):

Due to the different types of data available to read/write to the module, using a Structured Data type was used.  These user defined data types allow the user to read or write data in a complex structure that matches the type and size of data being used.  These data types may mix different formatted registers into a single structure.  These data types allow the user to copy a block of data either for read or write purposes in a single command.
The program has several UDTs set up for use with the different commands.  When a user defined data type tag is used in the program, its data type will be specified in the comments.

9.1. The user defined data types should be transferred from the sample code to the users’ code when the user imports the program.  If these are not transferred over, the user can transfer them in either of two methods:  Copy/paste or export/import.
9.1.1. Export/Import method:
9.1.1.1. In the original copy of the sample code, expand the User-Defined data types.
9.1.1.2. Right click on one of the types and select ‘export data type’.
9.1.1.3. In the users’ program, right click on the User-Defined selection under Data types and select ‘Import Data type’.
9.1.1.4. Repeat for all User Defined Data types.
9.1.2.   Copy/paste method:
9.1.2.1. In the original copy of the sample code, expand the User-Defined data types.  
9.1.2.2. Right click on one of the types and select copy.
9.1.2.3. In the users’ program, right click on the User-Defined selection under Data types and select Paste.
9.1.2.4. Repeat for all the user defined data types from the sample code.

10. Changing the module to a different slot in the chassis:
10.1. If the user needs to change the module to a different slot in the chassis, this can be done easily enough.  The user would:
10.1.1. Right click on the module in the I/O configuration tree.
10.1.2. Open module properties.
10.1.3. On the General tab, change the slot number to the desired slot.
10.1.3.1. When this change is made, all references to the I/O tables should be modified automatically to reference the correct, new slot.
10.1.3.2. Unfortunately, if you make a change of the slot number, the MSG instructions communications path does not change.  The user would need to enter into each MSG instruction and modify the communications path manually.  Refer to step: 5.1.6 for the references for each of the MSG instructions.

11. Multiple modules to install in the program:
If you have multiple modules to install in the program, you may make copies of the code, however, there is no simple way to do this.  Realize that all the Controller Tags need to be unique.  So every reference to a Controller scoped tag would need to be changed and a new tag created.  These would include all MSG instruction tags, as well as the Source and Destination tags used within the instructions.  All references to the I/O tables would need to be modified as well.
If a second program is created, the program tags can be duplicated without any difficulties.  
12. 

 Using the program:
The program is designed to be simple to use. The subroutines are set up so a single bit set in the main routine will enable the subroutine.  

Each of the rungs in the main routine is set up to enable based on one of two trigger bits.  These trigger bits designate which channel the command will be run for. This bit should be latched on by the user.  Once the subroutine is complete, it will clear the trigger bit set in the main routine.  
When running the MSG instruction, there are two possible failure modes:  1) the command fails; or 2) the MSG instruction itself fails.
If the command fails, the program will set the error_flag tag to a value of 1 as well as make a copy of the status return error code.  The user can then use this bit in their program to indicate the failure and be able to check for the error code for a possible cause of the failure is desired.
If the MSG instruction fails, the program will set the MSG_error tag to a value of 1 as well as make a copy of the error code and extended error code.  This may help to determine why the instruction is failing.  

1. The locations of the error codes would be:
	For all MSG instructions failures:
		The MSG instruction error would be found in controller “MSG_instruction_error” tag.
		The extended error would be found in controller tag “MSG_instruction_extended_error”.

If the command used the MSG instruction, then the return status of the command would have been saved for reference of the failure code.  This failure code is only available when using the MSG instruction.
For the command errors you will find the error code:
1. For the following commands, you will find the error code in controller tag “RETURN_STATUS.status”.
a. C2 Cal command;
b. Cal High command;
c. Cal Low command;
d. Reload command;
e. Save command;
f. Tare command;
g. Zero command;
h. Write_Params;
2. For the C2 Search command: “C2_COUNT.STATUS”
3. For the Real_Live_WT: “LIVE_WEIGHT.STATUS”
4. For the Read_Params: “PARAMS_READ.Status”
5. For the Read_SN: “C2_ser_num_read.LCNUM_STATUS”
6. For the WeighSysTest: “IT_TEST_READ.status”
2) 
12.1.1. 

12.2. 


The discrete commands are triggered by setting a bit for a specific command in the DISCRETE_COMMANDS subroutine.  This bit would also be latched on and the code will clear this trigger bit once the command has been run.  
If the command fails when running it discretely, the user will only get a failure bit set.  The program will set the “error_flag” tag to a value of 1 if a failure occurs.  These discrete commands will not return an error code.











___________________________________________________________________________________
9440 Carroll Park Dr. · Suite 150 · San Diego, CA 92121-5201· 858/278-2900 · 
800/821-5831 Fax 858/278-6700 · Web www.hardysolutions.com

image1.jpeg

image10.jpeg

