
C2_CAL - Ladder Diagram Page 1
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:31 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO C2 CALIBRATION
C2 calibration allows you to do a calibration without the need for test weights. System must have Hardy C2 load cells.

This routine will perform the C2CALCMD command and use the CalLow Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

This rung will initiate the C2 Calibration by sending the C2CALCMD command number, #102 to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START C2 CAL
control_bits[1]

Move
Source 102

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[0]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

C2 calibration allows you to do a calibration without the need for test weights. System must have Hardy C2 load cells.

This routine will perform the C2CALCMD command and use the CalLow Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

This rung will initiate the C2 Calibration by sending the C2CALCMD command number, #102 to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

C2_CAL - Ladder Diagram Page 2
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:32 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO C2 CALIBRATION
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table,Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 102

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

START C2 CAL
control_bits[1]

U

DO C2 CAL
control_bits[0]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table,Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO C2 CAL
control_bits[0]

L

START C2 CAL
control_bits[1]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

C2_SEARCH - Ladder Diagram Page 3
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:32 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

CHECK FOR NUMBER OF C2 LOAD CELLS ON SYSTEM
The C2SEARCH command will cause the module to search for the number of C2 load cells connected to the system.

This rung will initiate the C2SEARCH by sending the command number, #110 to the module. This command does not require any data sent at the same time. The command number
will be placed into the first word (Local:1:O.Ch0.Command) of the output table.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START C2 SEARCH
control_bits[3]

Move
Source 110

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[1]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The C2SEARCH command will cause the module to search for the number of C2 load cells connected to the system.

This rung will initiate the C2SEARCH by sending the command number, #110 to the module. This command does not require any data sent at the same time. The command number
will be placed into the first word (Local:1:O.Ch0.Command) of the output table.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. For this command, the Status_Return.status will contain the
number of C2 load cells found. This should not be interpreted as an error code.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 110

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

START C2 SEARCH
control_bits[3]

U

DO C2 SEARCH
control_bits[2]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. For this command, the Status_Return.status will contain the
number of C2 load cells found. This should not be interpreted as an error code.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

C2_SEARCH - Ladder Diagram Page 4
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:32 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

CHECK FOR NUMBER OF C2 LOAD CELLS ON SYSTEM
Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO C2 SEARCH
control_bits[2]

L

START C2 SEARCH
control_bits[3]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

CAL_HIGH - Ladder Diagram Page 5
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:32 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO HIGH POINT IN HARD CALIBRATION
The CALHIGHCMD initiates the second part of a traditional calibration. This type of calibration requires the user to empty the scale for the Cal Low command, and then place a known
weight, equal to the span value, onto the scale for the second part of the calibration procedure, the Cal High command. The traditional calibration is a two-step procedure and the Cal
High command should always be done following the Cal Low command. This routine will only run the Cal High portion of the calibration.

This routine will perform the CALHIGHCMD and use the Span Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

NOTE: User must have the weight on the scale prior to initiating this command.

This rung will initiate the Cal High by sending the Cal High command number, #101 to the module. This command does not require any data sent at the same time. The command
number will be placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START CAL HIGH
control_bits[5]

Move
Source 101

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[2]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The CALHIGHCMD initiates the second part of a traditional calibration. This type of calibration requires the user to empty the scale for the Cal Low command, and then place a known
weight, equal to the span value, onto the scale for the second part of the calibration procedure, the Cal High command. The traditional calibration is a two-step procedure and the Cal
High command should always be done following the Cal Low command. This routine will only run the Cal High portion of the calibration.

This routine will perform the CALHIGHCMD and use the Span Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

NOTE: User must have the weight on the scale prior to initiating this command.

This rung will initiate the Cal High by sending the Cal High command number, #101 to the module. This command does not require any data sent at the same time. The command
number will be placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

CAL_HIGH - Ladder Diagram Page 6
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:33 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO HIGH POINT IN HARD CALIBRATION
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table,Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 101

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

START CAL HIGH
control_bits[5]

U

DO CAL HIGH
control_bits[4]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table,Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO CAL HIGH
control_bits[4]

L

START CAL HIGH
control_bits[5]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

CAL_LOW - Ladder Diagram Page 7
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:33 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO LOW POINT OF HARD CALIBRATION
The CALLOWCMD initiates the start of a traditional calibration. This type of calibration requires the user to empty the scale for the Cal Low command, and then place a known weight,
equal to the span value, onto the scale for the second part of the calibration procedure, the Cal High command. The traditional calibration is a two-step procedure and the Cal High
command should always be done following the Cal Low command. This routine will only run the Cal Low portion of the calibration.

This routine will perform the CALLOWCMD and use the CalLow Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

This rung will initiate the Cal Low by sending the Cal Low command number, #100 to the module. This command does not require any data sent at the same time. The command
number will be placed into the first word Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START CAL LOW
control_bits[7]

Move
Source 100

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[3]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The CALLOWCMD initiates the start of a traditional calibration. This type of calibration requires the user to empty the scale for the Cal Low command, and then place a known weight,
equal to the span value, onto the scale for the second part of the calibration procedure, the Cal High command. The traditional calibration is a two-step procedure and the Cal High
command should always be done following the Cal Low command. This routine will only run the Cal Low portion of the calibration.

This routine will perform the CALLOWCMD and use the CalLow Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

This rung will initiate the Cal Low by sending the Cal Low command number, #100 to the module. This command does not require any data sent at the same time. The command
number will be placed into the first word Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

CAL_LOW - Ladder Diagram Page 8
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:33 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO LOW POINT OF HARD CALIBRATION
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 100

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO CAL LOW
control_bits[6]

U

START CAL LOW
control_bits[7]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO CAL LOW
control_bits[6]

L

START CAL LOW
control_bits[7]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

DEFAULTS - Ladder Diagram Page 9
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:33 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

SETS MODULE BACK TO DEFAULT SETTINGS
The SETDEFAULTPARAMS command will cause the module to go back to factory default settings. This will overwrite any previous settings programmed into the module.

This rung will initiate the SETDEFAULTPARAMS by sending the command number, #148 to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START DEFAULTS
control_bits[9]

Move
Source 148

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[4]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The SETDEFAULTPARAMS command will cause the module to go back to factory default settings. This will overwrite any previous settings programmed into the module.

This rung will initiate the SETDEFAULTPARAMS by sending the command number, #148 to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

DEFAULTS - Ladder Diagram Page 10
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:34 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

SETS MODULE BACK TO DEFAULT SETTINGS
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 148

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

SET TO DEFAULTS
control_bits[8]

U

START DEFAULTS
control_bits[9]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

SET TO DEFAULTS
control_bits[8]

L

START DEFAULTS
control_bits[9]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

IT_SYSTEM_TEST - Ladder Diagram Page 11
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:34 PM

Total number of rungs in routine: 5 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

RUN WEIGH SYSTEM TEST
This routine will run the WEIGHSYSTEST and the TESTRESULTS commands. The WEIGHSYSTEST will run first and then the TESTRESULTS command will be sent. The
WEIGHSYSTEST must be run before the TESTRESULTS is run for valid data.
The WEIGHSYSTEST is a function of the Integrated Technician. For a full return of this test, the system requires the IT summing box. The Integrated Technician can allow the user to
look at individual load cell information. This test is used for troubleshooting the load cells system in the event of failure. This test will cause the module to switch each load cell on one at
a time and take readings from it. The internal reference is a weight reading from an internal reference voltage on the module. The JBOX weight reading is from a reference voltage on
the JBOX.
When the system is equipped with the IT summing box, this test will return the following information:
word 0 = Command number - 109
word 1 = Number of sensors - as entered in the command
word 2 = Combined gross weight LSW - gross weight from all load cells
word 3 = Combined gross weight MSW - gross weight from all load cells
word 4 = gross weight load cell number 1 LSW - individual weight from load cell #1
word 5 = gross weight load cell number 1 MSW - individual weight from load cell #1
word 6 = gross weight load cell number 2 LSW - individual weight from load cell #2
word 7 = gross weight load cell number 2 MSW - individual weight from load cell #2
word 8 = gross weight load cell number 3 LSW - individual weight from load cell #3
word 9 = gross weight load cell number 3 MSW - individual weight from load cell #3
word 10 = gross weight load cell number 4 LSW - individual weight from load cell #4
word 11 = gross weight load cell number 4 MSW - individual weight from load cell #4
word 12 = Internal reference LSW - weight reading from internal reference voltage
word 13 = Internal reference MSW - weight reading from internal reference voltage
word 14 = JBOX reference weight LSW - weight reading from JBOX reference voltage
word 15 = JBOX reference weight MSW - weight reading from JBOX reference voltage

Words 2-15 are weight values, scaled according to the current Metric parameter value.
NOTE: The word locations in the input table will have the names as used for the default return, and those names will not apply to the return values for this command. So the copy
command in the next rung will copy the data into a UDT with the proper names for the data. Users should reference these UDTs for the data instead of the input tables.

If the user has fewer than four load cells, then only the readings from those load cells will be valid, and unused load cell positions should be ignored.
If the system does not have the IT summing box, then the only valid returns will be the internal reference and the combined readings.

This rung will initiate the WEIGHSYSTEST by sending the command number, 109, and the number of load cells, from Number_of_Sensors tag, into the output table at
Local:1:O.Ch0.Command and Local:1:O.Ch0.Data01.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START IT TEST
control_bits1[1]

/

READ TEST DATA
control_bits1[2]

Copy File
Source Number_of_Sensors
Dest Local:1:O.Ch0.Data01
Length 1

COP

Move
Source 109

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[5]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

This routine will run the WEIGHSYSTEST and the TESTRESULTS commands. The WEIGHSYSTEST will run first and then the TESTRESULTS command will be sent. The
WEIGHSYSTEST must be run before the TESTRESULTS is run for valid data.
The WEIGHSYSTEST is a function of the Integrated Technician. For a full return of this test, the system requires the IT summing box. The Integrated Technician can allow the user to
look at individual load cell information. This test is used for troubleshooting the load cells system in the event of failure. This test will cause the module to switch each load cell on one at
a time and take readings from it. The internal reference is a weight reading from an internal reference voltage on the module. The JBOX weight reading is from a reference voltage on
the JBOX.
When the system is equipped with the IT summing box, this test will return the following information:
word 0 = Command number - 109
word 1 = Number of sensors - as entered in the command
word 2 = Combined gross weight LSW - gross weight from all load cells
word 3 = Combined gross weight MSW - gross weight from all load cells
word 4 = gross weight load cell number 1 LSW - individual weight from load cell #1
word 5 = gross weight load cell number 1 MSW - individual weight from load cell #1
word 6 = gross weight load cell number 2 LSW - individual weight from load cell #2
word 7 = gross weight load cell number 2 MSW - individual weight from load cell #2
word 8 = gross weight load cell number 3 LSW - individual weight from load cell #3
word 9 = gross weight load cell number 3 MSW - individual weight from load cell #3
word 10 = gross weight load cell number 4 LSW - individual weight from load cell #4
word 11 = gross weight load cell number 4 MSW - individual weight from load cell #4
word 12 = Internal reference LSW - weight reading from internal reference voltage
word 13 = Internal reference MSW - weight reading from internal reference voltage
word 14 = JBOX reference weight LSW - weight reading from JBOX reference voltage
word 15 = JBOX reference weight MSW - weight reading from JBOX reference voltage

Words 2-15 are weight values, scaled according to the current Metric parameter value.
NOTE: The word locations in the input table will have the names as used for the default return, and those names will not apply to the return values for this command. So the copy
command in the next rung will copy the data into a UDT with the proper names for the data. Users should reference these UDTs for the data instead of the input tables.

If the user has fewer than four load cells, then only the readings from those load cells will be valid, and unused load cell positions should be ignored.
If the system does not have the IT summing box, then the only valid returns will be the internal reference and the combined readings.

This rung will initiate the WEIGHSYSTEST by sending the command number, 109, and the number of load cells, from Number_of_Sensors tag, into the output table at
Local:1:O.Ch0.Command and Local:1:O.Ch0.Data01.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

IT_SYSTEM_TEST - Ladder Diagram Page 12
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:34 PM

Total number of rungs in routine: 5 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

RUN WEIGH SYSTEM TEST
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, the full 16 words of data will be copied to either IT_Flt_test or IT_Int_test tag, based on the Metric setting.
This command does not have an error return and the normal status word is used for data, so this will not be copied to the Status_Return tag, as that would trigger an error indication.

Finally, the control bits are set to trigger the TESTRESULTS command.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 109

EQU current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest IT_Float_test
Length 1

COP

IT test results in
float format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest IT_Int_test
Length 1

COP

IT test results in
integer format

L

READ TEST DATA
control_bits1[2]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, the full 16 words of data will be copied to either IT_Flt_test or IT_Int_test tag, based on the Metric setting.
This command does not have an error return and the normal status word is used for data, so this will not be copied to the Status_Return tag, as that would trigger an error indication.

Finally, the control bits are set to trigger the TESTRESULTS command.

This rung copies the TESTRESULTS command number, 108, into the output table (Local:1:O.Ch0.Command) to initiate the command.
This command, run after the WEIGHSYSTEST command, will return load cell data. Here, like the WEIGHSYSTEST, needs to have the IT summing box to have full data. If you do not
have the IT summing box, then the individual load cell data will not be valid.
The TESTRESULTS command will return:
word 0 = Command number - 108
word 1 = Return to zero test. Return to zero test results are bit coded. Bits set to 1 indicate non-return to zero.
 Bit 0 = combined weight
 Bit 1 = load cell #1 (IT JBOX only)
 Bit 2 = load cell #2 (IT JBOX only)
 Bit 3 = load cell #3 (IT JBOX only)
 Bit 4 = load cell #4 (IT JBOX only)
word 2 = Millivolts/volt combined LSW - millivolts/volt return from all load cells combined.
word 3 = Millivolts/volt combined MSW - millivolts/volt return from all load cells combined.
word 4 = Millivolts/volt load cell #1 LSW - millivolts/volt return from load cell #1
word 5 = Millivolts/volt load cell #1 MSW - millivolts/volt return from load cell #1
word 6 = Millivolts/volt load cell #2 LSW - millivolts/volt return from load cell #2
word 7 = Millivolts/volt load cell #2 MSW - millivolts/volt return from load cell #2
word 8 = Millivolts/volt load cell #3 LSW - millivolts/volt return from load cell #3
word 9 = Millivolts/volt load cell #3 MSW - millivolts/volt return from load cell #3
word 10 = Millivolts/volt load cell #4 LSW - millivolts/volt return from load cell #4
word 11 = Millivolts/volt load cell #4 MSW - millivolts/volt return from load cell #4
word 12 = Sense Volts, LSW - voltage on the sense lines
word 13 = Sense Volts, MSW - voltage on the sense lines
word 14 = Resistance LSW - load cell input resistance determined from C2 at last calibration
word 15 = Resistance MSW - load cell input resistance determined from C2 at last calibration

Words 2-15 are all INTEGER values. Millivolt/volt readings have 4 decimal places. Load cell resistance has zero decimal places. Sense volts has 2 decimal placed.

2

READ TEST DATA
control_bits1[2]

Move
Source 108

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

This rung copies the TESTRESULTS command number, 108, into the output table (Local:1:O.Ch0.Command) to initiate the command.
This command, run after the WEIGHSYSTEST command, will return load cell data. Here, like the WEIGHSYSTEST, needs to have the IT summing box to have full data. If you do not
have the IT summing box, then the individual load cell data will not be valid.
The TESTRESULTS command will return:
word 0 = Command number - 108
word 1 = Return to zero test. Return to zero test results are bit coded. Bits set to 1 indicate non-return to zero.
 Bit 0 = combined weight
 Bit 1 = load cell #1 (IT JBOX only)
 Bit 2 = load cell #2 (IT JBOX only)
 Bit 3 = load cell #3 (IT JBOX only)
 Bit 4 = load cell #4 (IT JBOX only)
word 2 = Millivolts/volt combined LSW - millivolts/volt return from all load cells combined.
word 3 = Millivolts/volt combined MSW - millivolts/volt return from all load cells combined.
word 4 = Millivolts/volt load cell #1 LSW - millivolts/volt return from load cell #1
word 5 = Millivolts/volt load cell #1 MSW - millivolts/volt return from load cell #1
word 6 = Millivolts/volt load cell #2 LSW - millivolts/volt return from load cell #2
word 7 = Millivolts/volt load cell #2 MSW - millivolts/volt return from load cell #2
word 8 = Millivolts/volt load cell #3 LSW - millivolts/volt return from load cell #3
word 9 = Millivolts/volt load cell #3 MSW - millivolts/volt return from load cell #3
word 10 = Millivolts/volt load cell #4 LSW - millivolts/volt return from load cell #4
word 11 = Millivolts/volt load cell #4 MSW - millivolts/volt return from load cell #4
word 12 = Sense Volts, LSW - voltage on the sense lines
word 13 = Sense Volts, MSW - voltage on the sense lines
word 14 = Resistance LSW - load cell input resistance determined from C2 at last calibration
word 15 = Resistance MSW - load cell input resistance determined from C2 at last calibration

Words 2-15 are all INTEGER values. Millivolt/volt readings have 4 decimal places. Load cell resistance has zero decimal places. Sense volts has 2 decimal placed.

IT_SYSTEM_TEST - Ladder Diagram Page 13
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:34 PM

Total number of rungs in routine: 5 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

RUN WEIGH SYSTEM TEST
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy the full 16 words of data to the Mv_test_results tag.
This command does not have an error return and the normal status word is used for data, so this will not be copied to the Status_Return tag, as that would trigger an error indication.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

3 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 108

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Mv_test_results
Length 1

COP

results of second
part of IT test.

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO IT TEST
control_bits1[0]

U

START IT TEST
control_bits1[1]

U

READ TEST DATA
control_bits1[2]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy the full 16 words of data to the Mv_test_results tag.
This command does not have an error return and the normal status word is used for data, so this will not be copied to the Status_Return tag, as that would trigger an error indication.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

4

DO IT TEST
control_bits1[0]

L

START IT TEST
control_bits1[1]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

MainRoutine - Ladder Diagram Page 14
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:35 PM

Total number of rungs in routine: 18 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

THIS SAMPLE SHOWS ALL THE AVAILABLE COMMANDS FOR THE MODULE. FOR A SAMPLE OF MINIMUM COMMANDS REQUIRED, SEE THE
"SAMPLE_COMPACT_SHORT" PROGRAM.

This example code for the HI 1769 WS module is written as an example. The program does not do anything other than show how one can execute each command. The user is
responsible for writing the code to run their process.
Each command available to the 1769 module is shown in its own sub-routine. Not all commands are required to operate the module. Some commands require special hardware to fully
 operate.
The commands that should be included in all programs are:
WRITEMETRIC – Sets up the format for the data
READPARAM0 – Read some of parameters from module
READPARAM1 – Reads other set of parameters from the module
WRITEPARAM0 - Writes some of parameters to module
WRITEPARAM1 - Writes other set of parameters to the module
Calibration, Either
C2CALCMD - Calibration without the need of test weights. System must have C2 load cells.
Or
CALLOWCMD – Low end of a traditional calibration
CALHIGHCMD – High end of a traditional calibration
WRITENONVOLATILE – Saves setup to non-volatile memory

It is up to the user to determine what other commands they may require for their process.
The HI 1769-WS is a specialty moduleThe Input/Output/Config tables are set up based on the format selected when the module was installed in the I/O configuration. These two I/O
files are the only means the PLC has of communicating with the weight scale module, so all transactions, including weight readings, configuration, and tests must occur via these files.
The Config file is filled when the module is installed and, if configured to do so, will write the parameters to the module when placed into run mode.

The data types that can appear in the I/O files are:
16 bit integer
32 bit integer (DINT)
32 bit IEEE float.
In the 32 bit types, the data will be in the format set up in the configuration when installed.

The weight values in the HI 1769-WS are displayed as either 32 bit integers, or as 32 bit float depending on the value of the "METRIC" parameter (the METRIC parameter is explained in
 detail in the WRITE_METRIC routine.

This program demonstrates each command available for the HI 1769-WS module. All data tags, with the exception of the Local tags, are arbitrary and may not apply to a users setup.
For this program, the module is set up in slot 1, so all slot references will be accordingly.
Data tags Status_Return and ERROR_FLAG will be used throughout as a generic return location giving a return copy of the command number sent, status return (if any), and using
ERROR_FLAG as an error flag that can be monitored.
This program is set up to monitor the Metric setting to determine if the data is in float format or integer format. The user may not need both these forms of data, so can modify or delete
unnecessary tags.

This first rung will read the current metric setting any time there is no other command being run. Also, the 16 words of the input table for the module will be copied into an appropriate
location based on the format, either float or integer, designated by the metric setting.

 When the first word of the input table is equal to zero, this is considered the "NO COMMAND" condition. If a command were being sent, then the Command Word would reflect the
command requested and not equal zero.
The data received from this "NO COMMAND" condition is:
Local:1:I.Ch0_NOCMD.CommandEcho
Local:1:I.Ch0_NOCMD.CommandStatus
Local:1:I.Ch0_NOCMD.ChannelStatus
 Local:1:I.Ch0_NOCMD.ADConvertError - A/D converter error
 Local:1:I.Ch0_NOCMD.ADFailure - A/D failure
 Local:1:I.Ch0_NOCMD.InMotion - scale in motion
 Local:1:I.Ch0_NOCMD.NoCalibration - no calibration has been done
 Local:1:I.Ch0_NOCMD.WriteError - error saving to non-volatile memory
 Local:1:I.Ch0_NOCMD.NVRDefaulted - set if module returned to default parameters.
 Local:1:I.Ch0_NOCMD.Enabled - channel is enabled
Local:1:I.Ch0_NOCMD.Spare1
Local:1:I.Ch0_NOCMD.GrossWeight
Local:1:I.Ch0_NOCMD.NetWeight;
Local:1:I.Ch0_NOCMD.MetricParameter
 Local:1:I.Ch0_NOCMD.NumDecPlaces_0
 Local:1:I.Ch0_NOCMD.NumDecPlaces_1
 Local:1:I.Ch0_NOCMD.NumDecPlaces_2
 Local:1:I.Ch0_NOCMD.DisplayInKg
Local:1:I.Ch0_NOCMD.Spare2
Local:1:I.Ch0_NOCMD.ADC_Counts
Local:1:I.Ch0_NOCMD.CalibrationType
Local:1:I.Ch0_NOCMD.FirmwareRev;
Local:1:I.Ch0_NOCMD.ModuleSerialNumber
Local:1:I.Ch0_NOCMD.ADC_ConversionCount
NOTE: If you have firmware version 2.3 or higher, there have been changes that are not reflected in the labels in the AOP files. These changes are:
In the Input table:
Local:1:I.Ch0_NOCMD.Spare1 is now the firmware version.
Local:1:I.Ch0_NOCMD.Spare2 is now the Calibration type.
Local:1:I.Ch0_NOCMD.CalibrationType and Local:1:I.Ch0_NOCMD.FirmwareRev are now Rate of Change (in format based on metric setting.

NOTE: The Gross weight and Net weight readings will be transferred in a format based on the Metric setting. In the sample program, channel 0 (scale 1) is set up in integer format.

This rung is also sets the A_D_problem bit and Motion bit. These are conditions that could cause some commands to fail. The program will use these bits to prevent a command trying
to run if there is a failure condition present.

0 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 0

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

MetricParameter
Dest current_metric
Length 1

COP

current metric
setting

current_metric.6
Copy File

COP

Default return
values with weight

in floating point
format

THIS SAMPLE SHOWS ALL THE AVAILABLE COMMANDS FOR THE MODULE. FOR A SAMPLE OF MINIMUM COMMANDS REQUIRED, SEE THE
"SAMPLE_COMPACT_SHORT" PROGRAM.

This example code for the HI 1769 WS module is written as an example. The program does not do anything other than show how one can execute each command. The user is
responsible for writing the code to run their process.
Each command available to the 1769 module is shown in its own sub-routine. Not all commands are required to operate the module. Some commands require special hardware to fully
 operate.
The commands that should be included in all programs are:
WRITEMETRIC – Sets up the format for the data
READPARAM0 – Read some of parameters from module
READPARAM1 – Reads other set of parameters from the module
WRITEPARAM0 - Writes some of parameters to module
WRITEPARAM1 - Writes other set of parameters to the module
Calibration, Either
C2CALCMD - Calibration without the need of test weights. System must have C2 load cells.
Or
CALLOWCMD – Low end of a traditional calibration
CALHIGHCMD – High end of a traditional calibration
WRITENONVOLATILE – Saves setup to non-volatile memory

It is up to the user to determine what other commands they may require for their process.
The HI 1769-WS is a specialty moduleThe Input/Output/Config tables are set up based on the format selected when the module was installed in the I/O configuration. These two I/O
files are the only means the PLC has of communicating with the weight scale module, so all transactions, including weight readings, configuration, and tests must occur via these files.
The Config file is filled when the module is installed and, if configured to do so, will write the parameters to the module when placed into run mode.

The data types that can appear in the I/O files are:
16 bit integer
32 bit integer (DINT)
32 bit IEEE float.
In the 32 bit types, the data will be in the format set up in the configuration when installed.

The weight values in the HI 1769-WS are displayed as either 32 bit integers, or as 32 bit float depending on the value of the "METRIC" parameter (the METRIC parameter is explained in
 detail in the WRITE_METRIC routine.

This program demonstrates each command available for the HI 1769-WS module. All data tags, with the exception of the Local tags, are arbitrary and may not apply to a users setup.
For this program, the module is set up in slot 1, so all slot references will be accordingly.
Data tags Status_Return and ERROR_FLAG will be used throughout as a generic return location giving a return copy of the command number sent, status return (if any), and using
ERROR_FLAG as an error flag that can be monitored.
This program is set up to monitor the Metric setting to determine if the data is in float format or integer format. The user may not need both these forms of data, so can modify or delete
unnecessary tags.

This first rung will read the current metric setting any time there is no other command being run. Also, the 16 words of the input table for the module will be copied into an appropriate
location based on the format, either float or integer, designated by the metric setting.

 When the first word of the input table is equal to zero, this is considered the "NO COMMAND" condition. If a command were being sent, then the Command Word would reflect the
command requested and not equal zero.
The data received from this "NO COMMAND" condition is:
Local:1:I.Ch0_NOCMD.CommandEcho
Local:1:I.Ch0_NOCMD.CommandStatus
Local:1:I.Ch0_NOCMD.ChannelStatus
 Local:1:I.Ch0_NOCMD.ADConvertError - A/D converter error
 Local:1:I.Ch0_NOCMD.ADFailure - A/D failure
 Local:1:I.Ch0_NOCMD.InMotion - scale in motion
 Local:1:I.Ch0_NOCMD.NoCalibration - no calibration has been done
 Local:1:I.Ch0_NOCMD.WriteError - error saving to non-volatile memory
 Local:1:I.Ch0_NOCMD.NVRDefaulted - set if module returned to default parameters.
 Local:1:I.Ch0_NOCMD.Enabled - channel is enabled
Local:1:I.Ch0_NOCMD.Spare1
Local:1:I.Ch0_NOCMD.GrossWeight
Local:1:I.Ch0_NOCMD.NetWeight;
Local:1:I.Ch0_NOCMD.MetricParameter
 Local:1:I.Ch0_NOCMD.NumDecPlaces_0
 Local:1:I.Ch0_NOCMD.NumDecPlaces_1
 Local:1:I.Ch0_NOCMD.NumDecPlaces_2
 Local:1:I.Ch0_NOCMD.DisplayInKg
Local:1:I.Ch0_NOCMD.Spare2
Local:1:I.Ch0_NOCMD.ADC_Counts
Local:1:I.Ch0_NOCMD.CalibrationType
Local:1:I.Ch0_NOCMD.FirmwareRev;
Local:1:I.Ch0_NOCMD.ModuleSerialNumber
Local:1:I.Ch0_NOCMD.ADC_ConversionCount
NOTE: If you have firmware version 2.3 or higher, there have been changes that are not reflected in the labels in the AOP files. These changes are:
In the Input table:
Local:1:I.Ch0_NOCMD.Spare1 is now the firmware version.
Local:1:I.Ch0_NOCMD.Spare2 is now the Calibration type.
Local:1:I.Ch0_NOCMD.CalibrationType and Local:1:I.Ch0_NOCMD.FirmwareRev are now Rate of Change (in format based on metric setting.

NOTE: The Gross weight and Net weight readings will be transferred in a format based on the Metric setting. In the sample program, channel 0 (scale 1) is set up in integer format.

This rung is also sets the A_D_problem bit and Motion bit. These are conditions that could cause some commands to fail. The program will use these bits to prevent a command trying
to run if there is a failure condition present.

MainRoutine - Ladder Diagram Page 15
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:35 PM

Total number of rungs in routine: 18 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Local:1:I.Ch0_NOCMD.
ChannelStatus.0

Local:1:I.Ch0_NOCMD.
ChannelStatus.1

scale input problem
A_D_problem

Local:1:I.Ch0_NOCMD.
ChannelStatus.6

scale in motion
Motion

This rung will start the routine to run the C2 calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

1 /

scale input problem
A_D_problem

/

scale in motion
Motion

DO C2 CAL
control_bits[0]

Jump To Subroutine
Routine Name C2_CAL

JSR
DO C2 CALIBRATION

This rung will start the routine to run the C2 calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

This rung will start the routine to run the C2 search.

2

DO C2 SEARCH
control_bits[2]

Jump To Subroutine
Routine Name C2_SEARCH

JSR

CHECK FOR NUMBER OF
C2 LOAD CELLS ON

SYSTEM

This rung will start the routine to run the C2 search.

This rung will start the routine to run the Cal High portion of the traditional calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

3 /

scale input problem
A_D_problem

/

scale in motion
Motion

DO CAL HIGH
control_bits[4]

Jump To Subroutine
Routine Name CAL_HIGH

JSR

DO HIGH POINT IN
HARD CALIBRATION

This rung will start the routine to run the Cal High portion of the traditional calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

This rung will start the routine to run the Cal Low portion of the traditional calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

4 /

scale input problem
A_D_problem

/

scale in motion
Motion

DO CAL LOW
control_bits[6]

Jump To Subroutine
Routine Name CAL_LOW

JSR

DO LOW POINT OF HARD
CALIBRATION

This rung will start the routine to run the Cal Low portion of the traditional calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

This rung will start the routine to set the module to default settings.

5

SET TO DEFAULTS
control_bits[8]

Jump To Subroutine
Routine Name DEFAULTS

JSR

SETS MODULE BACK TO
DEFAULT SETTINGS

This rung will start the routine to set the module to default settings.

MainRoutine - Ladder Diagram Page 16
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:35 PM

Total number of rungs in routine: 18 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

This rung will start the routine to run the IT System test.

6

DO IT TEST
control_bits1[0]

Jump To Subroutine
Routine Name IT_SYSTEM_TEST

JSR

RUN WEIGH SYSTEM
TEST

This rung will start the routine to run the IT System test.

This rung will start the routine to read parameter 0 data.

7

DO READ PARAM 0
control_bits[10]

Jump To Subroutine
Routine Name READ_PARAMETER_0

JSR

READ PARAMETER 0
VALUES

This rung will start the routine to read parameter 0 data.

This rung will start the routine to read parameter 1 data.

8

DO READ PARAM 1
control_bits[12]

Jump To Subroutine
Routine Name READ_PARAMETER_1

JSR

READ PARAMETER 1
VALUES

This rung will start the routine to read parameter 1 data.

This will start the routine to read load cell serial numbers.

9

DO READ SERIAL NUM
control_bits[14]

Jump To Subroutine
Routine Name READ_SERIAL_NUMBER

JSR

READS SERIAL NUMBER
FROM C2 LOAD CELLS

This will start the routine to read load cell serial numbers.

This will start the routine to reload non-volatile memory.

10

DO RELOD NON
VOLATILE
control_bits[16]

Jump To Subroutine
Routine Name RELOAD_NON_VOLATILE

JSR

RESTORE SETTINGS
FROM NON-VOLATILE

MEMORY

This will start the routine to reload non-volatile memory.

This will start the routine to run the stability test.

11

DO STABILITY TEST
control_bits1[3]

Jump To Subroutine
Routine Name STABILITY_TEST

JSR

ALLOWS CHECK OF
STABILITY OF SYSTEM

This will start the routine to run the stability test.

This will start the routine to tare the net weight.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

12 /

scale input problem
A_D_problem

/

scale in motion
Motion

DO TARE
control_bits[18]

Jump To Subroutine
Routine Name TARE

JSR

TARE THE CURRENT NET
WEIGHT

This will start the routine to tare the net weight.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

This will start the routine to write the metric setting.

13

DO WRITE METRIC
control_bits[20]

Jump To Subroutine
Routine Name WRITE_METRIC

JSR

WRITE NET METRIC
SETTING TO THE

MODULE

This will start the routine to write the metric setting.

MainRoutine - Ladder Diagram Page 17
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:35 PM

Total number of rungs in routine: 18 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

This will start the routine to write to non-volatile memory.

14

DO WRITE NON
VOLATILE
control_bits[22]

Jump To Subroutine
Routine Name WRITE_NON_VOLATILE

JSR

SAVE CURRENT
SETTINGS TO NON
VOLATILE MEMORY

This will start the routine to write to non-volatile memory.

This will start the routine to write the parameter 0 data.

15

DO WRITE PARAM 0
control_bits[24]

Jump To Subroutine
Routine Name WRITE_PARAMETERS_0

JSR

WRITES NEW PARAMETER
0 VALUES

This will start the routine to write the parameter 0 data.

This will start the routine to write the parameter 1 data.

16

DO WRITE PARAM 1
control_bits[26]

Jump To Subroutine
Routine Name WRITE_PARAMETERS_1

JSR

WRITE PARAMETER 1
VALUES TO MODULE

This will start the routine to write the parameter 1 data.

This will start the routine to run the zero command.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

17 /

scale input problem
A_D_problem

/

scale in motion
Motion

DO ZERO
control_bits[28]

Jump To Subroutine
Routine Name ZERO

JSR

ZERO THE CURRENT
GROSS WEIGHT

This will start the routine to run the zero command.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

(End)

READ_PARAMETER_0 - Ladder Diagram Page 18
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:35 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READ PARAMETER 0 VALUES
The READPARAM0 command will read a block of parameters from the module. These are the same parameters set using a "WRITEPARAM0" command. They include:
Word 2 = ChanActive - turns the channel on/off
Word 3 = Metric - metric setting determines format of data.
Word 4 = Waversaver - amount of vibration immunity.
 Settings: 0 = No Waversaver
 1 = 4 Hertz
 2 = 2 Hertz
 3 = 1 Hertz
 4 = 0.5 Hertz
 5 = 0.25 Hertz
Word 5 = NumAverages - number of readings averaged together
Word 6 = ZeroTrackEnable - AutoZero tracking on/off
Word 7 = ROC Time Base
Word 8 = AutoZeroTolerance, LSW - Auto Zero Tracking tolerance
Word 9 = AutoZeroTolerance, MSW - Auto Zero Tracking tolerance
Word 10 = Motion Tolerance LSW - used to determine motion
Word 11 = Motion Tolerance MSW - used to determine motion
Word 12 = Zero Tolerance LSW - tolerance for zero command
Word 13 = Zero Tolerance MSW - tolerance for zero command
Word 14 = unused
Word 15 = unused

This rung will initiate the READPARAM0 command by writing the command number, #105, to the output table, Local:1:O.Ch0.Command.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START READ PARAM 0
control_bits[11]

Move
Source 105

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[6]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The READPARAM0 command will read a block of parameters from the module. These are the same parameters set using a "WRITEPARAM0" command. They include:
Word 2 = ChanActive - turns the channel on/off
Word 3 = Metric - metric setting determines format of data.
Word 4 = Waversaver - amount of vibration immunity.
 Settings: 0 = No Waversaver
 1 = 4 Hertz
 2 = 2 Hertz
 3 = 1 Hertz
 4 = 0.5 Hertz
 5 = 0.25 Hertz
Word 5 = NumAverages - number of readings averaged together
Word 6 = ZeroTrackEnable - AutoZero tracking on/off
Word 7 = ROC Time Base
Word 8 = AutoZeroTolerance, LSW - Auto Zero Tracking tolerance
Word 9 = AutoZeroTolerance, MSW - Auto Zero Tracking tolerance
Word 10 = Motion Tolerance LSW - used to determine motion
Word 11 = Motion Tolerance MSW - used to determine motion
Word 12 = Zero Tolerance LSW - tolerance for zero command
Word 13 = Zero Tolerance MSW - tolerance for zero command
Word 14 = unused
Word 15 = unused

This rung will initiate the READPARAM0 command by writing the command number, #105, to the output table, Local:1:O.Ch0.Command.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

READ_PARAMETER_0 - Ladder Diagram Page 19
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:35 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READ PARAMETER 0 VALUES
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
It will also copy all 14 words of data into a Read_Flt_param_0 or Read_Int_param_0 tag, based on the Metric setting.

NOTE: THE TOLERANCE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 105

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest Read_Flt_param_0
Length 1

COP

parameter 0 values
read from module
with float values

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest Read_Int_param_0
Length 1

COP

read parameter 0
values from module

using integer
values.

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO READ PARAM 0
control_bits[10]

U

START READ PARAM 0
control_bits[11]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
It will also copy all 14 words of data into a Read_Flt_param_0 or Read_Int_param_0 tag, based on the Metric setting.

NOTE: THE TOLERANCE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO READ PARAM 0
control_bits[10]

L

START READ PARAM 0
control_bits[11]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

READ_PARAMETER_1 - Ladder Diagram Page 20
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:35 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READ PARAMETER 1 VALUES
The READPARAM1 command will read a block of parameters from the module. These are the same parameters set using a "WRITEPARAM1" command plus some non-user settable
calibration parameters. They include:
Word 2 = Tareweight LSW - Tare weight value
Word 3 = Tareweight MSW - Tare weight value
Word 4 = Span Weight LSW - used for traditional Cal High Cmd
Word 5 = Span Weight MSW - used for traditional Cal High Cmd
Word 6 = CalLowWeight LSW - used for traditional Cal Low Cmd and C2 reference point
Word 7 = CalLowWeight MSW - used for traditional Cal Low Cmd and C2 reference point
Word 8 = Zerocount LSW - A/D counts at last ZEROCMD (read only)
Word 9 = Zerocount MSW - A/D counts at last ZEROCMD (read only)
Word 10 = Calzerocount LSW - A/D counts at zero weight obtained at the last calibration (read only)
Word 11 = Calzerocount MSW - A/D counts at zero weight obtained at the last calibration (read only)
Word 12 = CalLowCount LSW - A/D counts at CalLowWeight (read only)
Word 13 = CalLowCount MSW - A/D counts at CalLowWeight (read only)
Word 14 = CalHighCount LSW - A/D counts at span weight (traditional cal only) (read only)
Word 15 = CalHighCount MSW - A/D counts at span weight (traditional cal only) (read only)

This rung will initiate the READPARAM1 command by writing the command number, #106, to the output table, Local:1:O.Ch0.Command].

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START READ PARAM 1
control_bits[13]

Move
Source 106

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[7]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The READPARAM1 command will read a block of parameters from the module. These are the same parameters set using a "WRITEPARAM1" command plus some non-user settable
calibration parameters. They include:
Word 2 = Tareweight LSW - Tare weight value
Word 3 = Tareweight MSW - Tare weight value
Word 4 = Span Weight LSW - used for traditional Cal High Cmd
Word 5 = Span Weight MSW - used for traditional Cal High Cmd
Word 6 = CalLowWeight LSW - used for traditional Cal Low Cmd and C2 reference point
Word 7 = CalLowWeight MSW - used for traditional Cal Low Cmd and C2 reference point
Word 8 = Zerocount LSW - A/D counts at last ZEROCMD (read only)
Word 9 = Zerocount MSW - A/D counts at last ZEROCMD (read only)
Word 10 = Calzerocount LSW - A/D counts at zero weight obtained at the last calibration (read only)
Word 11 = Calzerocount MSW - A/D counts at zero weight obtained at the last calibration (read only)
Word 12 = CalLowCount LSW - A/D counts at CalLowWeight (read only)
Word 13 = CalLowCount MSW - A/D counts at CalLowWeight (read only)
Word 14 = CalHighCount LSW - A/D counts at span weight (traditional cal only) (read only)
Word 15 = CalHighCount MSW - A/D counts at span weight (traditional cal only) (read only)

This rung will initiate the READPARAM1 command by writing the command number, #106, to the output table, Local:1:O.Ch0.Command].

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

READ_PARAMETER_1 - Ladder Diagram Page 21
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:36 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READ PARAMETER 1 VALUES
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
It will also copy all 14 words into a Read_Flt_param_1 or Read_Int_param_1 tag, based on the Metric setting.

NOTE: THE WEIGHT VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 106

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest Read_Flt_param_1
Length 1

COP

parameter 1 values
read from module

using floats.

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest Read_Int_param_1
Length 1

COP

parameter 1 values
read from module

using integers.

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO READ PARAM 1
control_bits[12]

U

START READ PARAM 1
control_bits[13]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
It will also copy all 14 words into a Read_Flt_param_1 or Read_Int_param_1 tag, based on the Metric setting.

NOTE: THE WEIGHT VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO READ PARAM 1
control_bits[12]

L

START READ PARAM 1
control_bits[13]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

READ_SERIAL_NUMBER - Ladder Diagram Page 22
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:36 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READS SERIAL NUMBER FROM C2 LOAD CELLS
The READC2SERIALNUM command will cause the module to read the serial number of the C2 load cell selected. The C2SEARCH command must be run sometime prior to running
this command, but does not need to be immediately prior and only needs to be run once.

This rung will initiate the READC2SERIALNUM by sending the command number, #112 to the module. This command does require the sensor number to be sent at the same time.
The command number will be placed into the first word (Local:1:O.Ch0.Command) of the output table and the sensor number will be placed into the second word (LOCAL:1:O.DATA01).
 For this program, the sensor number selected will be copied from data tag sensor_sel.

The data read from the READC2SERIALNUM command contains:
word 2 - word 9 = serial number read as ASCII characters
word 10 = sensitivity LSW - mv/v rating of load cell
word 11 = sensitivity MSW - mv/v rating of load cell
word 12 = capacity LSW = capacity of load cell
word 13 = capacity MSW = capacity of load cell
word 14 = unused
word 15 = unused

NOTE: SENSITIVITY IS AN ITEGER WITH 4 DECIMAL PLACES AND CAPACITY IS AN INTEGER WITH ZERO DECIMAL PLACES AND UNITS OF POUNDS.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START READ SERIAL
NUM
control_bits[15]

Copy File
Source sensor_sel
Dest Local:1:O.Ch0.Data01
Length 1

COP

Move
Source 112

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[8]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The READC2SERIALNUM command will cause the module to read the serial number of the C2 load cell selected. The C2SEARCH command must be run sometime prior to running
this command, but does not need to be immediately prior and only needs to be run once.

This rung will initiate the READC2SERIALNUM by sending the command number, #112 to the module. This command does require the sensor number to be sent at the same time.
The command number will be placed into the first word (Local:1:O.Ch0.Command) of the output table and the sensor number will be placed into the second word (LOCAL:1:O.DATA01).
 For this program, the sensor number selected will be copied from data tag sensor_sel.

The data read from the READC2SERIALNUM command contains:
word 2 - word 9 = serial number read as ASCII characters
word 10 = sensitivity LSW - mv/v rating of load cell
word 11 = sensitivity MSW - mv/v rating of load cell
word 12 = capacity LSW = capacity of load cell
word 13 = capacity MSW = capacity of load cell
word 14 = unused
word 15 = unused

NOTE: SENSITIVITY IS AN ITEGER WITH 4 DECIMAL PLACES AND CAPACITY IS AN INTEGER WITH ZERO DECIMAL PLACES AND UNITS OF POUNDS.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

READ_SERIAL_NUMBER - Ladder Diagram Page 23
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:36 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READS SERIAL NUMBER FROM C2 LOAD CELLS
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
It will also copy all 14 words into a serial_number tag.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 112

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest serial_number
Length 1

COP

serial number of
selected load cell

along with
sensitivity and

capacity.

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO READ SERIAL NUM
control_bits[14]

U

START READ SERIAL
NUM
control_bits[15]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
It will also copy all 14 words into a serial_number tag.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO READ SERIAL NUM
control_bits[14]

L

START READ SERIAL
NUM
control_bits[15]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

RELOAD_NON_VOLATILE - Ladder Diagram Page 24
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:36 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

RESTORE SETTINGS FROM NON-VOLATILE MEMORY
The RELOADNONVOLATILE command will restore the users previously saved configuration of the module from non-volatile memory in the module.

This rung will initiate the Reload by sending the command number, #16 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START RELOAD NON
VOLATILE

control_bits[17]
Move
Source 16

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[9]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The RELOADNONVOLATILE command will restore the users previously saved configuration of the module from non-volatile memory in the module.

This rung will initiate the Reload by sending the command number, #16 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 16

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO RELOD NON
VOLATILE
control_bits[16]

U

START RELOAD NON
VOLATILE

control_bits[17]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

RELOAD_NON_VOLATILE - Ladder Diagram Page 25
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:37 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

RESTORE SETTINGS FROM NON-VOLATILE MEMORY
Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO RELOD NON
VOLATILE
control_bits[16]

L

START RELOAD NON
VOLATILE

control_bits[17]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

STABILITY_TEST - Ladder Diagram Page 26
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:37 PM

Total number of rungs in routine: 4 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

ALLOWS CHECK OF STABILITY OF SYSTEM
The STABILITY test needs the IT summing box to perform all its functions. This test will turn on a single input for the unit and report its weight in place of the normal weight readings in
the input table. Without the IT summing box, the unit can turn on the internal reference voltage only.
This test will allow the user to monitor the weight reading for drift or excessive fluctuation.

The command number for this is #107. This command requires the selection of which input to monitor. The command number will be placed into the first word
(Local:1:O.Ch0.Command) of the output table and the input selection will be placed in the next word (LOCAL:1:O.DATA01).
The return from this command will be the same as the NO COMMAND except the weight readings will reflect the reading based only on the input selected. The selections are:
0 = Internal reference voltage - checks if the input circuits are stable
1-4 = load cell selection - checks if selected l/c is stable
5 = reference voltage from IT JBOX - checks if cable is causing noise

All weight values will then be affected by this selection during the time the command number is left unchanged in the output table.

This rung will copy the selection into the output table at LOCAL:1:O.DATA01 (from signal_select), and the command number for the STABILITY test, command #107, into word
Local:1:O.Ch0.Command. The user must have the selection value entered into the signal_select tag prior to running this routine, otherwise an error could occur.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START STABILITY TEST
control_bits1[4]

Copy File
Source signal_select
Dest Local:1:O.Ch0.Data01
Length 1

COP

Move
Source 107

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[10]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The STABILITY test needs the IT summing box to perform all its functions. This test will turn on a single input for the unit and report its weight in place of the normal weight readings in
the input table. Without the IT summing box, the unit can turn on the internal reference voltage only.
This test will allow the user to monitor the weight reading for drift or excessive fluctuation.

The command number for this is #107. This command requires the selection of which input to monitor. The command number will be placed into the first word
(Local:1:O.Ch0.Command) of the output table and the input selection will be placed in the next word (LOCAL:1:O.DATA01).
The return from this command will be the same as the NO COMMAND except the weight readings will reflect the reading based only on the input selected. The selections are:
0 = Internal reference voltage - checks if the input circuits are stable
1-4 = load cell selection - checks if selected l/c is stable
5 = reference voltage from IT JBOX - checks if cable is causing noise

All weight values will then be affected by this selection during the time the command number is left unchanged in the output table.

This rung will copy the selection into the output table at LOCAL:1:O.DATA01 (from signal_select), and the command number for the STABILITY test, command #107, into word
Local:1:O.Ch0.Command. The user must have the selection value entered into the signal_select tag prior to running this routine, otherwise an error could occur.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, however, the weights are single input readings instead of true weight
readings. Since these are not true weight readings, they will not be copied to the "default_return_flt or default_return_int", but to stability_flt or stability_int tag, based on the Metric
setting. This will continue until the "STOP STABILITY" bit is trigger by the user.
If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 107

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest Stability_float
Length 1

COP

results of stability
test in float format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest Stability_int
Length 1

COP

results of stability
test in integer

format

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, however, the weights are single input readings instead of true weight
readings. Since these are not true weight readings, they will not be copied to the "default_return_flt or default_return_int", but to stability_flt or stability_int tag, based on the Metric
setting. This will continue until the "STOP STABILITY" bit is trigger by the user.
If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

STABILITY_TEST - Ladder Diagram Page 27
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:37 PM

Total number of rungs in routine: 4 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

ALLOWS CHECK OF STABILITY OF SYSTEM
This rung will stop the stability test. When either the STOP STABILITY bit or the ERROR_FLAG is high, the command is cleared from the output table, Local:1:O.Ch0.Command, and
any control bits are cleared. This will stop the stability test and resume normal operation.

2

STOP STABILITY TEST
control_bits1[5]

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

STOP STABILITY TEST
control_bits1[5]

U

START STABILITY TEST
control_bits1[4]

U

DO STABILITY TEST
control_bits1[3]

This rung will stop the stability test. When either the STOP STABILITY bit or the ERROR_FLAG is high, the command is cleared from the output table, Local:1:O.Ch0.Command, and
any control bits are cleared. This will stop the stability test and resume normal operation.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

3

DO STABILITY TEST
control_bits1[3]

L

START STABILITY TEST
control_bits1[4]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

TARE - Ladder Diagram Page 28
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:37 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

TARE THE CURRENT NET WEIGHT
The TARE CMD will cause the current net weight to be set to zero, providing the scale is not in motion and there is not an A/D error.

This rung will initiate the Tare by sending the command number, #2 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START TARE
control_bits[19]

Move
Source 2

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[11]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The TARE CMD will cause the current net weight to be set to zero, providing the scale is not in motion and there is not an A/D error.

This rung will initiate the Tare by sending the command number, #2 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

TARE - Ladder Diagram Page 29
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:38 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

TARE THE CURRENT NET WEIGHT
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 2

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO TARE
control_bits[18]

U

START TARE
control_bits[19]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO TARE
control_bits[18]

L

START TARE
control_bits[19]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

WRITE_METRIC - Ladder Diagram Page 30
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:38 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITE NET METRIC SETTING TO THE MODULE
The metric setting determines the format of the weight values. The metric setting is the sum of 3 fields:
Bit 7 will determine if the weight values are in lbs or kgs.
Bit 7 = 1: the weight values are displayed in kilograms.
 Bit 7 = 0: weight values are in lbs. (Default).

Bit 6 will determine if the weight values are in integer or floating-point format.
Bit 6 = 1: the weight values are displayed as a floating point.
Bit 6 = 0, weight values are displayed as integer. (Default)

Bits 0, 1, & 2 – this is a binary value to determine the number of decimal places transferred. This only applies if bit 6 = 0.

This routine will write a new metric setting to the module. This involves sending the WRITEMETRIC command number and the new metric value. The command number for this is #3.
This command requires the new metric value at the same time. The command number will be placed into the first word (Local:1:O.Ch0.Command) of the output table and the new
metric value will be placed in the forth word (LOCAL:1:O.DATA03). All weight values will then be affected by this new metric setting, including values being written after this takes effect.

The weight values affected by the metric setting are:
Weight readings, both Gross and Net read during a “NO COMMAND” condition and during other routines returning these values;
The AutoZero Tolerance, Motion Tolerance, and Zero Tolerance in both the WRITE_PARAMETER_0 and READ_PARAMETER_0 routines;
Tare weight, Span weight, and CalLow weight in both the WRITE_PARAMETER_1 and READ_PARAMETER_1 routines.
Weight values read during the INTEGRATED_TECHNICIAN routine.

This rung will copy the new metric value into the output table at word LOCAL:1:O.DATA03 (from Metric tag), and the command number for setting a new metric setting, command #3,
into word Local:1:O.Ch0.Command of the output table. The user must have the new value entered into the Metric tag prior to running this routine, otherwise unexpected results could
occur.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START WRITE METRIC
control_bits[21]

Copy File
Source Metric
Dest Local:1:O.Ch0.Data03
Length 1

COP

Move
Source 3

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[12]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The metric setting determines the format of the weight values. The metric setting is the sum of 3 fields:
Bit 7 will determine if the weight values are in lbs or kgs.
Bit 7 = 1: the weight values are displayed in kilograms.
 Bit 7 = 0: weight values are in lbs. (Default).

Bit 6 will determine if the weight values are in integer or floating-point format.
Bit 6 = 1: the weight values are displayed as a floating point.
Bit 6 = 0, weight values are displayed as integer. (Default)

Bits 0, 1, & 2 – this is a binary value to determine the number of decimal places transferred. This only applies if bit 6 = 0.

This routine will write a new metric setting to the module. This involves sending the WRITEMETRIC command number and the new metric value. The command number for this is #3.
This command requires the new metric value at the same time. The command number will be placed into the first word (Local:1:O.Ch0.Command) of the output table and the new
metric value will be placed in the forth word (LOCAL:1:O.DATA03). All weight values will then be affected by this new metric setting, including values being written after this takes effect.

The weight values affected by the metric setting are:
Weight readings, both Gross and Net read during a “NO COMMAND” condition and during other routines returning these values;
The AutoZero Tolerance, Motion Tolerance, and Zero Tolerance in both the WRITE_PARAMETER_0 and READ_PARAMETER_0 routines;
Tare weight, Span weight, and CalLow weight in both the WRITE_PARAMETER_1 and READ_PARAMETER_1 routines.
Weight values read during the INTEGRATED_TECHNICIAN routine.

This rung will copy the new metric value into the output table at word LOCAL:1:O.DATA03 (from Metric tag), and the command number for setting a new metric setting, command #3,
into word Local:1:O.Ch0.Command of the output table. The user must have the new value entered into the Metric tag prior to running this routine, otherwise unexpected results could
occur.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

WRITE_METRIC - Ladder Diagram Page 31
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:38 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITE NET METRIC SETTING TO THE MODULE
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.
NOTE: There are two default return tags, one that has the weight values in float format and one with the values in integer format. Which is used will depend on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 3

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

MetricParameter
Dest current_metric
Length 1

COP

current metric
setting

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO WRITE METRIC
control_bits[20]

U

START WRITE METRIC
control_bits[21]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.
NOTE: There are two default return tags, one that has the weight values in float format and one with the values in integer format. Which is used will depend on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO WRITE METRIC
control_bits[20]

L

START WRITE METRIC
control_bits[21]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

WRITE_NON_VOLATILE - Ladder Diagram Page 32
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:38 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

SAVE CURRENT SETTINGS TO NON VOLATILE MEMORY
The WRITENONVOLATILE command will save the users configuration of the module to non-volatile memory in the module. This is not normally needed, as the commands that write
parameters will automatically save the values to non-volatile memory. The exceptions are the Zero, Tare, and the WriteMetric commands.

This rung will initiate the WRITENONVOLATILE command by sending the command number, #4, to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START WRITE NON
VOLATILE

control_bits[23]
Move
Source 4

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[13]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The WRITENONVOLATILE command will save the users configuration of the module to non-volatile memory in the module. This is not normally needed, as the commands that write
parameters will automatically save the values to non-volatile memory. The exceptions are the Zero, Tare, and the WriteMetric commands.

This rung will initiate the WRITENONVOLATILE command by sending the command number, #4, to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

WRITE_NON_VOLATILE - Ladder Diagram Page 33
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:39 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

SAVE CURRENT SETTINGS TO NON VOLATILE MEMORY
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table,Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 4

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO WRITE NON
VOLATILE
control_bits[22]

U

START WRITE NON
VOLATILE

control_bits[23]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table,Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO WRITE NON
VOLATILE
control_bits[22]

L

START WRITE NON
VOLATILE

control_bits[23]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

WRITE_PARAMETERS_0 - Ladder Diagram Page 34
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:39 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITES NEW PARAMETER 0 VALUES
The WRITEPARAM0 command will write a block of parameters to the module. These parameters are used for setting up the operation of the module. They include:
Word 2 = ChanActive - turns the channel on/off
Word 3 = Metric - metric setting determines format of data.
Word 4 = Waversaver - amount of vibration immunity.
 Settings: 0 = No Waversaver
 1 = 4 Hertz
 2 = 2 Hertz
 3 = 1 Hertz
 4 = 0.5 Hertz
 5 = 0.25 Hertz
Word 5 = NumAverages - number of readings averaged together
Word 6 = ZeroTrackEnable - AutoZero tracking on/off
Word 7 = ROC Time Base
Word 8 = AutoZeroTolerance, LSW - Auto Zero Tracking tolerance
Word 9 = AutoZeroTolerance, MSW - Auto Zero Tracking tolerance
Word 10 = Motion Tolerance LSW - used to determine motion
Word 11 = Motion Tolerance MSW - used to determine motion
Word 12 = Zero Tolerance LSW - tolerance for zero command
Word 13 = Zero Tolerance MSW - tolerance for zero command
Word 14 = unused
Word 15 = unused

NOTE: THE TOLERANCE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING. IF THE METRIC SETTING IS SET FOR FLOATING POINT FORMAT,
THESE VALUES MUST BE WRITTEN IN THE FLOATING POINT FORMAT TO BE VALID.

These parameters must be entered into the output table prior to entering the command number.

This rung will copy 16 words containing the command number, #103, and the above words to the output table, Local:1:O.Ch0.Command through LOCAL:1:O.DATA15. This program is
using the “write_flt_param_0” or “write_int_param_0” data tag, based on the Metric setting, to copy the data from. All the parameter data must be valid to prevent an error. If an error
occurs, the Command Status return will contain the offset location indicating which parameter was in error.
NOTE: You cannot write a single parameter. All parameters will be written at the same time.
To write a single parameter, first do a READPARAM0 command, copy the parameters read to the output, change the parameter value you need to change, then set the command word
to initiate the write.

NOTE: THE METRIC PARAMETER IS APPLIED LAST, WHICH MEANS THAT ALL PARAMETERS ARE INTERPRETED ACCORDING TO THE CURRENT METRIC VALUE AT THE
TIME OF THE WRITE. THIS ALSO MEANS THAT THE PARAMETERS TAG USED WILL BE BASED ON THE CURRENT METRIC SETTING, SO BE SURE TO USE THE TAG THAT
WILL BE WRITTEN. EXAMPLE: IF THE CURRENT METRIC SETTING IS INTEGER, AND YOU ARE GOING TO CHANGE IT TO FLOAT, YOUR WRITE PARAMETERS WILL USE
THE INTEGER TAG, NOT THE FLOAT TAG FOR THE WRITE. IF YOU CHANGE THE METRIC SETTING IN THE INTEGER TAG AND WRITE IT, THE NEXT WRITE WILL USE THE
FLOAT TAG SINCE THE METRIC SETTING WAS CHANGED. It is suggested that the WRITE METRIC command be used first when changing the METRIC setting, then do the write
param command if needed.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START WRITE PARAM 0
control_bits[25] current_metric.6

Copy File
Source write_flt_param_0
Dest Local:1:O.Ch0.Data02
Length 14

COP

/
current_metric.6

Copy File
Source write_int_param_0
Dest Local:1:O.Ch0.Data02
Length 14

COP

Move
Source 103

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[14]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The WRITEPARAM0 command will write a block of parameters to the module. These parameters are used for setting up the operation of the module. They include:
Word 2 = ChanActive - turns the channel on/off
Word 3 = Metric - metric setting determines format of data.
Word 4 = Waversaver - amount of vibration immunity.
 Settings: 0 = No Waversaver
 1 = 4 Hertz
 2 = 2 Hertz
 3 = 1 Hertz
 4 = 0.5 Hertz
 5 = 0.25 Hertz
Word 5 = NumAverages - number of readings averaged together
Word 6 = ZeroTrackEnable - AutoZero tracking on/off
Word 7 = ROC Time Base
Word 8 = AutoZeroTolerance, LSW - Auto Zero Tracking tolerance
Word 9 = AutoZeroTolerance, MSW - Auto Zero Tracking tolerance
Word 10 = Motion Tolerance LSW - used to determine motion
Word 11 = Motion Tolerance MSW - used to determine motion
Word 12 = Zero Tolerance LSW - tolerance for zero command
Word 13 = Zero Tolerance MSW - tolerance for zero command
Word 14 = unused
Word 15 = unused

NOTE: THE TOLERANCE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING. IF THE METRIC SETTING IS SET FOR FLOATING POINT FORMAT,
THESE VALUES MUST BE WRITTEN IN THE FLOATING POINT FORMAT TO BE VALID.

These parameters must be entered into the output table prior to entering the command number.

This rung will copy 16 words containing the command number, #103, and the above words to the output table, Local:1:O.Ch0.Command through LOCAL:1:O.DATA15. This program is
using the “write_flt_param_0” or “write_int_param_0” data tag, based on the Metric setting, to copy the data from. All the parameter data must be valid to prevent an error. If an error
occurs, the Command Status return will contain the offset location indicating which parameter was in error.
NOTE: You cannot write a single parameter. All parameters will be written at the same time.
To write a single parameter, first do a READPARAM0 command, copy the parameters read to the output, change the parameter value you need to change, then set the command word
to initiate the write.

NOTE: THE METRIC PARAMETER IS APPLIED LAST, WHICH MEANS THAT ALL PARAMETERS ARE INTERPRETED ACCORDING TO THE CURRENT METRIC VALUE AT THE
TIME OF THE WRITE. THIS ALSO MEANS THAT THE PARAMETERS TAG USED WILL BE BASED ON THE CURRENT METRIC SETTING, SO BE SURE TO USE THE TAG THAT
WILL BE WRITTEN. EXAMPLE: IF THE CURRENT METRIC SETTING IS INTEGER, AND YOU ARE GOING TO CHANGE IT TO FLOAT, YOUR WRITE PARAMETERS WILL USE
THE INTEGER TAG, NOT THE FLOAT TAG FOR THE WRITE. IF YOU CHANGE THE METRIC SETTING IN THE INTEGER TAG AND WRITE IT, THE NEXT WRITE WILL USE THE
FLOAT TAG SINCE THE METRIC SETTING WAS CHANGED. It is suggested that the WRITE METRIC command be used first when changing the METRIC setting, then do the write
param command if needed.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

WRITE_PARAMETERS_0 - Ladder Diagram Page 35
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:39 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITES NEW PARAMETER 0 VALUES
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the "READPARAM0" returns, so these words will be copied to the Read_Flt_param_0 or Read_Int_param_0
tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return. The status returned, if not zero, will be an indication of which word location is invalid.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 103

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest Read_Flt_param_0
Length 1

COP

parameter 0 values
read from module
with float values

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest Read_Int_param_0
Length 1

COP

read parameter 0
values from module

using integer
values.

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO WRITE PARAM 0
control_bits[24]

U

START WRITE PARAM 0
control_bits[25]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the "READPARAM0" returns, so these words will be copied to the Read_Flt_param_0 or Read_Int_param_0
tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return. The status returned, if not zero, will be an indication of which word location is invalid.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO WRITE PARAM 0
control_bits[24]

L

START WRITE PARAM 0
control_bits[25]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

WRITE_PARAMETERS_1 - Ladder Diagram Page 36
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:39 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITE PARAMETER 1 VALUES TO MODULE
The WRITEPARAM1 command will write a block of parameters to the module. These parameters are used for setting up the operation of the module. They include:
Word 2 = Tareweight LSW - Tare weight value
Word 3 = Tareweight MSW - Tare weight value
Word 4 = Span Weight LSW - used for traditional Cal High Cmd
Word 5 = Span Weight MSW - used for traditional Cal High Cmd
Word 6 = CalLowWeight LSW - used for traditional Cal Low Cmd and C2 reference point
Word 7 = CalLowWeight MSW - used for traditional Cal Low Cmd and C2 reference point
Word 8 = unused
Word 9 = unused
Word 10 = unused
Word 11 = unused
Word 12 = unused
Word 13 = unused
Word 14 = unused
Word 15 = unused

NOTE: THESE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING. IF THE METRIC SETTING IS SET FOR FLOATING POINT FORMAT, THESE
VALUES MUST BE WRITTEN IN THE FLOATING POINT FORMAT TO BE VALID.

These parameters must be entered into the output table prior to entering the command number.

This rung will copy 6 words containing the parameter values to the output table, LOCAL:1:O.Data02, and the
command number, #104, to the output table, Local:1:O.Ch0.Command. This program is using write_flt_param_0 or write_int_param_0, based on the Metric setting, to copy the data
from. All the parameter data must be valid to prevent an error. If an error occurs, the Command Status return will contain the offset location indicating which parameter was in error.
NOTE: You cannot write a single parameter. All parameters will be written at the same time.
To write a single parameter, first do a READPARAM1 command, copy the parameters read to the output, change the parameter value you need to change, then set the command word
to initiate the write.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START WRITE PARAM 1
control_bits[27] current_metric.6

Copy File
Source write_flt_param_1
Dest Local:1:O.Ch0.Data02
Length 6

COP

/
current_metric.6

Copy File
Source write_int_param_1
Dest Local:1:O.Ch0.Data02
Length 6

COP

Move
Source 104

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[15]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The WRITEPARAM1 command will write a block of parameters to the module. These parameters are used for setting up the operation of the module. They include:
Word 2 = Tareweight LSW - Tare weight value
Word 3 = Tareweight MSW - Tare weight value
Word 4 = Span Weight LSW - used for traditional Cal High Cmd
Word 5 = Span Weight MSW - used for traditional Cal High Cmd
Word 6 = CalLowWeight LSW - used for traditional Cal Low Cmd and C2 reference point
Word 7 = CalLowWeight MSW - used for traditional Cal Low Cmd and C2 reference point
Word 8 = unused
Word 9 = unused
Word 10 = unused
Word 11 = unused
Word 12 = unused
Word 13 = unused
Word 14 = unused
Word 15 = unused

NOTE: THESE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING. IF THE METRIC SETTING IS SET FOR FLOATING POINT FORMAT, THESE
VALUES MUST BE WRITTEN IN THE FLOATING POINT FORMAT TO BE VALID.

These parameters must be entered into the output table prior to entering the command number.

This rung will copy 6 words containing the parameter values to the output table, LOCAL:1:O.Data02, and the
command number, #104, to the output table, Local:1:O.Ch0.Command. This program is using write_flt_param_0 or write_int_param_0, based on the Metric setting, to copy the data
from. All the parameter data must be valid to prevent an error. If an error occurs, the Command Status return will contain the offset location indicating which parameter was in error.
NOTE: You cannot write a single parameter. All parameters will be written at the same time.
To write a single parameter, first do a READPARAM1 command, copy the parameters read to the output, change the parameter value you need to change, then set the command word
to initiate the write.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

WRITE_PARAMETERS_1 - Ladder Diagram Page 37
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:40 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITE PARAMETER 1 VALUES TO MODULE
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the "READPARAM1" returns, so these words will be copied to the Read_Flt_param_1 or Read_Int_param_1
tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return. The status returned, if not zero, will be an indication of which word location is invalid.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 104

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest Read_Flt_param_1
Length 1

COP

parameter 1 values
read from module

using floats.

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest Read_Int_param_1
Length 1

COP

parameter 1 values
read from module

using integers.

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO WRITE PARAM 1
control_bits[26]

U

START WRITE PARAM 1
control_bits[27]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the "READPARAM1" returns, so these words will be copied to the Read_Flt_param_1 or Read_Int_param_1
tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return. The status returned, if not zero, will be an indication of which word location is invalid.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO WRITE PARAM 1
control_bits[26]

L

START WRITE PARAM 1
control_bits[27]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

ZERO - Ladder Diagram Page 38
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:40 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

ZERO THE CURRENT GROSS WEIGHT
The ZEROCMD will cause the current gross weight to be set to zero, providing the scale is not in motion, the current gross weight plus and previously zeroed gross weight does not
exceed the zero tolerance setting (set in WRITE_PARAM_0 routine), and there is not an A/D error.

This rung will initiate the Zero by sending the command number, #1 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START ZERO
control_bits[29]

Move
Source 1

Dest Local:1:O.Ch0.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[16]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The ZEROCMD will cause the current gross weight to be set to zero, providing the scale is not in motion, the current gross weight plus and previously zeroed gross weight does not
exceed the zero tolerance setting (set in WRITE_PARAM_0 routine), and there is not an A/D error.

This rung will initiate the Zero by sending the command number, #1 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (Local:1:O.Ch0.Command) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

ZERO - Ladder Diagram Page 39
CompactLogix:MainTask:SCALE_1 10/7/2011 6:13:40 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

ZERO THE CURRENT GROSS WEIGHT
This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch0_NOCMD.

CommandEcho
 16#0000
Source B 1

EQU
Copy File
Source Local:1:I.Ch0_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch0_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch0_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch0.Comman

d
 16#0000

CLR

U

DO ZERO
control_bits[28]

U

START ZERO
control_bits[29]

This rung will check to see if the command has completed by checking the command word on the input data table, Local:1:I.Ch0_NOCMD.CommandEcho. If this is equal to the
command number sent, then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any
 errors that may have occurred.
The next 14 words in the input table (words 2 - 15) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, Local:1:O.Ch0.Command, and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO ZERO
control_bits[28]

L

START ZERO
control_bits[29]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

C2_CAL - Ladder Diagram Page 40
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:40 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO C2 CALIBRATION
C2 calibration allows you to do a calibration without the need for test weights. System must have Hardy C2 load cells.

This routine will perform the C2CALCMD command and use the CalLow Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

This rung will initiate the C2 Calibration by sending the C2CALCMD command number, #102 to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START C2 CAL
control_bits[1]

Move
Source 102

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[0]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

C2 calibration allows you to do a calibration without the need for test weights. System must have Hardy C2 load cells.

This routine will perform the C2CALCMD command and use the CalLow Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

This rung will initiate the C2 Calibration by sending the C2CALCMD command number, #102 to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

C2_CAL - Ladder Diagram Page 41
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:41 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO C2 CALIBRATION
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 102

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

START C2 CAL
control_bits[1]

U

DO C2 CAL
control_bits[0]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO C2 CAL
control_bits[0]

L

START C2 CAL
control_bits[1]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

C2_SEARCH - Ladder Diagram Page 42
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:41 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

CHECK FOR NUMBER OF C2 LOAD CELLS ON SYSTEM
The C2SEARCH command will cause the module to search for the number of C2 load cells connected to the system.

This rung will initiate the C2SEARCH by sending the command number, #110 to the module. This command does not require any data sent at the same time. The command number
will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START C2 SEARCH
control_bits[3]

Move
Source 110

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[1]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The C2SEARCH command will cause the module to search for the number of C2 load cells connected to the system.

This rung will initiate the C2SEARCH by sending the command number, #110 to the module. This command does not require any data sent at the same time. The command number
will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. For this command, the Status_Return.status will contain the number of C2 load cells
found. This should not be interpreted as an error code.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 110

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

START C2 SEARCH
control_bits[3]

U

DO C2 SEARCH
control_bits[2]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. For this command, the Status_Return.status will contain the number of C2 load cells
found. This should not be interpreted as an error code.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

C2_SEARCH - Ladder Diagram Page 43
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:41 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

CHECK FOR NUMBER OF C2 LOAD CELLS ON SYSTEM
Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO C2 SEARCH
control_bits[2]

L

START C2 SEARCH
control_bits[3]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

CAL_HIGH - Ladder Diagram Page 44
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:41 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO HIGH POINT IN HARD CALIBRATION
The CALHIGHCMD initiates the second part of a traditional calibration. This type of calibration requires the user to empty the scale for the Cal Low command, and then place a known
weight, equal to the span value, onto the scale for the second part of the calibration procedure, the Cal High command. The traditional calibration is a two-step procedure and the Cal
High command should always be done following the Cal Low command. This routine will only run the Cal High portion of the calibration.

This routine will perform the CALHIGHCMD and use the Span Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

NOTE: User must have the weight on the scale prior to initiating this command.

This rung will initiate the Cal High by sending the Cal High command number, #101 to the module. This command does not require any data sent at the same time. The command
number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START CAL HIGH
control_bits[5]

Move
Source 101

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[2]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The CALHIGHCMD initiates the second part of a traditional calibration. This type of calibration requires the user to empty the scale for the Cal Low command, and then place a known
weight, equal to the span value, onto the scale for the second part of the calibration procedure, the Cal High command. The traditional calibration is a two-step procedure and the Cal
High command should always be done following the Cal Low command. This routine will only run the Cal High portion of the calibration.

This routine will perform the CALHIGHCMD and use the Span Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

NOTE: User must have the weight on the scale prior to initiating this command.

This rung will initiate the Cal High by sending the Cal High command number, #101 to the module. This command does not require any data sent at the same time. The command
number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

CAL_HIGH - Ladder Diagram Page 45
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:42 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO HIGH POINT IN HARD CALIBRATION
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 101

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

START CAL HIGH
control_bits[5]

U

DO CAL HIGH
control_bits[4]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO CAL HIGH
control_bits[4]

L

START CAL HIGH
control_bits[5]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

CAL_LOW - Ladder Diagram Page 46
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:42 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO LOW POINT OF HARD CALIBRATION
The CALLOWCMD initiates the start of a traditional calibration. This type of calibration requires the user to empty the scale for the Cal Low command, and then place a known weight,
equal to the span value, onto the scale for the second part of the calibration procedure, the Cal High command. The traditional calibration is a two-step procedure and the Cal High
command should always be done following the Cal Low command. This routine will only run the Cal Low portion of the calibration.

This routine will perform the CALLOWCMD and use the CalLow Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

This rung will initiate the Cal Low by sending the Cal Low command number, #100 to the module. This command does not require any data sent at the same time. The command
number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START CAL LOW
control_bits[7]

Move
Source 100

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[3]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The CALLOWCMD initiates the start of a traditional calibration. This type of calibration requires the user to empty the scale for the Cal Low command, and then place a known weight,
equal to the span value, onto the scale for the second part of the calibration procedure, the Cal High command. The traditional calibration is a two-step procedure and the Cal High
command should always be done following the Cal Low command. This routine will only run the Cal Low portion of the calibration.

This routine will perform the CALLOWCMD and use the CalLow Weight (set in WRITE_PARAM_1 routine) as the reference point of weight.

This rung will initiate the Cal Low by sending the Cal Low command number, #100 to the module. This command does not require any data sent at the same time. The command
number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

CAL_LOW - Ladder Diagram Page 47
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:42 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

DO LOW POINT OF HARD CALIBRATION
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 100

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO CAL LOW
control_bits[6]

U

START CAL LOW
control_bits[7]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO CAL LOW
control_bits[6]

L

START CAL LOW
control_bits[7]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

DEFAULTS - Ladder Diagram Page 48
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:42 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

SETS MODULE BACK TO DEFAULT SETTINGS
The SETDEFAULTPARAMS command will cause the module to go back to factory default settings. This will overwrite any previous settings programmed into the module.

This rung will initiate the SETDEFAULTPARAMS by sending the command number, #148 to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START DEFAULTS
control_bits[9]

Move
Source 148

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[4]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The SETDEFAULTPARAMS command will cause the module to go back to factory default settings. This will overwrite any previous settings programmed into the module.

This rung will initiate the SETDEFAULTPARAMS by sending the command number, #148 to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

DEFAULTS - Ladder Diagram Page 49
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:43 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

SETS MODULE BACK TO DEFAULT SETTINGS
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 148

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

SET TO DEFAULTS
control_bits[8]

U

START DEFAULTS
control_bits[9]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

SET TO DEFAULTS
control_bits[8]

L

START DEFAULTS
control_bits[9]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

IT_SYSTEM_TEST - Ladder Diagram Page 50
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:43 PM

Total number of rungs in routine: 5 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

RUN WEIGH SYSTEM TEST
This routine will run the WEIGHSYSTEST and the TESTRESULTS commands. The WEIGHSYSTEST will run first and then the TESTRESULTS command will be sent. The
WEIGHSYSTEST must be run before the TESTRESULTS is run for valid data.
The WEIGHSYSTEST is a function of the Integrated Technician. For a full return of this test, the system requires the IT summing box. The Integrated Technician can allow the user to
look at individual load cell information. This test is used for troubleshooting the load cells system in the event of failure. This test will cause the module to switch each load cell on one at
a time and take readings from it. The internal reference is a weight reading from an internal reference voltage on the module. The JBOX weight reading is from a reference voltage on
the JBOX.
When the system is equipped with the IT summing box, this test will return the following information:
word 16 = Command number - 109
word 17 = Number of sensors - as entered in the command
word 18 = Combined gross weight LSW - gross weight from all load cells
word 19 = Combined gross weight MSW - gross weight from all load cells
word 20 = gross weight load cell number 1 LSW - individual weight from load cell #1
word 21 = gross weight load cell number 1 MSW - individual weight from load cell #1
word 22 = gross weight load cell number 2 LSW - individual weight from load cell #2
word 23 = gross weight load cell number 2 MSW - individual weight from load cell #2
word 24 = gross weight load cell number 3 LSW - individual weight from load cell #3
word 25 = gross weight load cell number 3 MSW - individual weight from load cell #3
word 26 = gross weight load cell number 4 LSW - individual weight from load cell #4
word 27 = gross weight load cell number 4 MSW - individual weight from load cell #4
word 28 = Internal reference LSW - weight reading from internal reference voltage
word 29 = Internal reference MSW - weight reading from internal reference voltage
word 30 = JBOX reference weight LSW - weight reading from JBOX reference voltage
word 31 = JBOX reference weight MSW - weight reading from JBOX reference voltage

Words 18-31 are weight values, scaled according to the current Metric parameter value.
NOTE: The word locations in the input table will have the names as used for the default return, and those names will not apply to the return values for this command. So the copy
command in the next rung will copy the data into a UDT with the proper names for the data. Users should reference these UDTs for the data instead of the input tables.

If the user has fewer than four load cells, then only the readings from those load cells will be valid, and unused load cell positions should be ignored.
If the system does not have the IT summing box, then the only valid returns will be the internal reference and the combined readings.

This rung will initiate the WEIGHSYSTEST by sending the command number, 109, and the number of load cells, from Number_of_Sensors tag, into the output table at
LOCAL:1:O.DATA[16] and LOCAL:1:O.DATA[17].

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START IT TEST
control_bits1[1]

/

READ TEST DATA
control_bits1[2]

Copy File
Source Number_of_Sensors
Dest Local:1:O.Ch1.Data01
Length 1

COP

Move
Source 109

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[5]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

This routine will run the WEIGHSYSTEST and the TESTRESULTS commands. The WEIGHSYSTEST will run first and then the TESTRESULTS command will be sent. The
WEIGHSYSTEST must be run before the TESTRESULTS is run for valid data.
The WEIGHSYSTEST is a function of the Integrated Technician. For a full return of this test, the system requires the IT summing box. The Integrated Technician can allow the user to
look at individual load cell information. This test is used for troubleshooting the load cells system in the event of failure. This test will cause the module to switch each load cell on one at
a time and take readings from it. The internal reference is a weight reading from an internal reference voltage on the module. The JBOX weight reading is from a reference voltage on
the JBOX.
When the system is equipped with the IT summing box, this test will return the following information:
word 16 = Command number - 109
word 17 = Number of sensors - as entered in the command
word 18 = Combined gross weight LSW - gross weight from all load cells
word 19 = Combined gross weight MSW - gross weight from all load cells
word 20 = gross weight load cell number 1 LSW - individual weight from load cell #1
word 21 = gross weight load cell number 1 MSW - individual weight from load cell #1
word 22 = gross weight load cell number 2 LSW - individual weight from load cell #2
word 23 = gross weight load cell number 2 MSW - individual weight from load cell #2
word 24 = gross weight load cell number 3 LSW - individual weight from load cell #3
word 25 = gross weight load cell number 3 MSW - individual weight from load cell #3
word 26 = gross weight load cell number 4 LSW - individual weight from load cell #4
word 27 = gross weight load cell number 4 MSW - individual weight from load cell #4
word 28 = Internal reference LSW - weight reading from internal reference voltage
word 29 = Internal reference MSW - weight reading from internal reference voltage
word 30 = JBOX reference weight LSW - weight reading from JBOX reference voltage
word 31 = JBOX reference weight MSW - weight reading from JBOX reference voltage

Words 18-31 are weight values, scaled according to the current Metric parameter value.
NOTE: The word locations in the input table will have the names as used for the default return, and those names will not apply to the return values for this command. So the copy
command in the next rung will copy the data into a UDT with the proper names for the data. Users should reference these UDTs for the data instead of the input tables.

If the user has fewer than four load cells, then only the readings from those load cells will be valid, and unused load cell positions should be ignored.
If the system does not have the IT summing box, then the only valid returns will be the internal reference and the combined readings.

This rung will initiate the WEIGHSYSTEST by sending the command number, 109, and the number of load cells, from Number_of_Sensors tag, into the output table at
LOCAL:1:O.DATA[16] and LOCAL:1:O.DATA[17].

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

IT_SYSTEM_TEST - Ladder Diagram Page 51
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:43 PM

Total number of rungs in routine: 5 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

RUN WEIGH SYSTEM TEST
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
the full 16 words of data will be copied to either IT_Flt_test or IT_Int_test tag, based on the Metric setting.
This command does not have an error return and the normal status word is used for data, so this will not be copied to the Status_Return tag, as that would trigger an error indication.

Finally, the control bits are set to trigger the TESTRESULTS command.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 109

EQU current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest IT_Float_test
Length 1

COP

IT test results in
float format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest IT_Int_test
Length 1

COP

IT test results in
integer format

L

READ TEST DATA
control_bits1[2]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
the full 16 words of data will be copied to either IT_Flt_test or IT_Int_test tag, based on the Metric setting.
This command does not have an error return and the normal status word is used for data, so this will not be copied to the Status_Return tag, as that would trigger an error indication.

Finally, the control bits are set to trigger the TESTRESULTS command.

This rung copies the TESTRESULTS command number, 108, into the output table (LOCAL:1:O.DATA[16]) to initiate the command.
This command, run after the WEIGHSYSTEST command, will return load cell data. Here, like the WEIGHSYSTEST, needs to have the IT summing box to have full data. If you do not
have the IT summing box, then the individual load cell data will not be valid.
The TESTRESULTS command will return:
word 16 = Command number - 109
word 17 = Return to zero test. Return to zero test results are bit coded. Bits set to 1 indicate non-return to zero.
 Bit 0 = combined weight
 Bit 1 = load cell #1 (IT JBOX only)
 Bit 2 = load cell #2 (IT JBOX only)
 Bit 3 = load cell #3 (IT JBOX only)
 Bit 4 = load cell #4 (IT JBOX only)
word 18 = Millivolts/volt combined LSW - millivolts/volt return from all load cells combined.
word 19 = Millivolts/volt combined MSW - millivolts/volt return from all load cells combined.
word 20 = Millivolts/volt load cell #1 LSW - millivolts/volt return from load cell #1
word 21 = Millivolts/volt load cell #1 MSW - millivolts/volt return from load cell #1
word 22 = Millivolts/volt load cell #2 LSW - millivolts/volt return from load cell #2
word 23 = Millivolts/volt load cell #2 MSW - millivolts/volt return from load cell #2
word 24 = Millivolts/volt load cell #3 LSW - millivolts/volt return from load cell #3
word 25 = Millivolts/volt load cell #3 MSW - millivolts/volt return from load cell #3
word 26 = Millivolts/volt load cell #4 LSW - millivolts/volt return from load cell #4
word 27 = Millivolts/volt load cell #4 MSW - millivolts/volt return from load cell #4
word 28 = Sense Volts, LSW - voltage on the sense lines
word 29 = Sense Volts, MSW - voltage on the sense lines
word 30 = Resistance LSW - load cell input resistance determined from C2 at last calibration
word 31 = Resistance MSW - load cell input resistance determined from C2 at last calibration

Words 18-31 are all INTEGER values. Millivolt/volt readings have 4 decimal places. Load cell resistance has zero decimal places. Sense volts has 2 decimal placed.

2

READ TEST DATA
control_bits1[2]

Move
Source 108

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

This rung copies the TESTRESULTS command number, 108, into the output table (LOCAL:1:O.DATA[16]) to initiate the command.
This command, run after the WEIGHSYSTEST command, will return load cell data. Here, like the WEIGHSYSTEST, needs to have the IT summing box to have full data. If you do not
have the IT summing box, then the individual load cell data will not be valid.
The TESTRESULTS command will return:
word 16 = Command number - 109
word 17 = Return to zero test. Return to zero test results are bit coded. Bits set to 1 indicate non-return to zero.
 Bit 0 = combined weight
 Bit 1 = load cell #1 (IT JBOX only)
 Bit 2 = load cell #2 (IT JBOX only)
 Bit 3 = load cell #3 (IT JBOX only)
 Bit 4 = load cell #4 (IT JBOX only)
word 18 = Millivolts/volt combined LSW - millivolts/volt return from all load cells combined.
word 19 = Millivolts/volt combined MSW - millivolts/volt return from all load cells combined.
word 20 = Millivolts/volt load cell #1 LSW - millivolts/volt return from load cell #1
word 21 = Millivolts/volt load cell #1 MSW - millivolts/volt return from load cell #1
word 22 = Millivolts/volt load cell #2 LSW - millivolts/volt return from load cell #2
word 23 = Millivolts/volt load cell #2 MSW - millivolts/volt return from load cell #2
word 24 = Millivolts/volt load cell #3 LSW - millivolts/volt return from load cell #3
word 25 = Millivolts/volt load cell #3 MSW - millivolts/volt return from load cell #3
word 26 = Millivolts/volt load cell #4 LSW - millivolts/volt return from load cell #4
word 27 = Millivolts/volt load cell #4 MSW - millivolts/volt return from load cell #4
word 28 = Sense Volts, LSW - voltage on the sense lines
word 29 = Sense Volts, MSW - voltage on the sense lines
word 30 = Resistance LSW - load cell input resistance determined from C2 at last calibration
word 31 = Resistance MSW - load cell input resistance determined from C2 at last calibration

Words 18-31 are all INTEGER values. Millivolt/volt readings have 4 decimal places. Load cell resistance has zero decimal places. Sense volts has 2 decimal placed.

IT_SYSTEM_TEST - Ladder Diagram Page 52
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:43 PM

Total number of rungs in routine: 5 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

RUN WEIGH SYSTEM TEST
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy the full 16 words of data to the Mv_test_results tag.
This command does not have an error return and the normal status word is used for data, so this will not be copied to the Status_Return tag, as that would trigger an error indication.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

3 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 108

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Mv_test_results
Length 1

COP

results of second
part of IT test.

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO IT TEST
control_bits1[0]

U

START IT TEST
control_bits1[1]

U

READ TEST DATA
control_bits1[2]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy the full 16 words of data to the Mv_test_results tag.
This command does not have an error return and the normal status word is used for data, so this will not be copied to the Status_Return tag, as that would trigger an error indication.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

4

DO IT TEST
control_bits1[0]

L

START IT TEST
control_bits1[1]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

MainRoutine - Ladder Diagram Page 53
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:44 PM

Total number of rungs in routine: 18 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

All commands for the second scale are identical to the first scale, except the location in the input/output tables will be offset by 16 words. That is, words 0-15 in the input/output tables
apply to scalel 1, and words 16-31 apply to scale 2.
Each command available to the 1769 module is shown in its own sub-routine. Not all commands are required to operate the module. Some commands require special hardware to fully
 operate.
The commands that should be included in all programs are:
WRITEMETRIC – Sets up the format for the data
READPARAM0 – Read some of parameters from module
READPARAM1 – Reads other set of parameters from the module
WRITEPARAM0 - Writes some of parameters to module
WRITEPARAM1 - Writes other set of parameters to the module
Calibration, Either
C2CALCMD - Calibration without the need of test weights. System must have C2 load cells.
Or
CALLOWCMD – Low end of a traditional calibration
CALHIGHCMD – High end of a traditional calibration
WRITENONVOLATILE – Saves setup to non-volatile memory

It is up to the user to determine what other commands they may require for their process.
The HI 1769-WS is a generic module for the Compact Logix system. Generic modules on this platform have a fixed number of input and output words, which are 16 bit integers. The HI
1769-WS module will have 32 words input and 32 words output, of which it uses the first 16 words for channel 0 and if it is a 2 channel module, the second 16 words for channel 1.
These two I/O files are the only means the PLC has of communicating with the weigh scale module, so all transactions, including weight readings, configuration, and tests must occur via
 these files.

The data types that can appear in the I/O files are:
16 bit integer
32 bit integer
32 bit IEEE float.
In the 32 bit types, they are split between two words, of which the least significant word comes first, followed by the most significant word.

The weight values in the HI 1769-WS are displayed as either 32 bit integers, or as 32 bit float depending on the value of the "METRIC" parameter (the METRIC parameter is explained in
 detail in the WRITE_METRIC routine.

This program demonstrates each command available for the HI 1769-WS module. All data tags, with the exception of the Local tags, are arbitrary and may not apply to a users setup.
For this program, the module is set up in slot 1, so all slot references will be accordingly.
Data tags Status_Return and ERROR_FLAG will be used throughout as a generic return location giving a return copy of the command number sent, status return (if any), and using
ERROR_FLAG as an error flag that can be monitored.
This program is set up to monitor the Metric setting to determine if the data is in float format or integer format. The user may not need both these forms of data, so can modify or delete
unnecessary tags.

This first rung will read the current metric setting any time there is no other command being run. Also, the 16 words of the input table for the module will be copied into an appropriate
location based on the format, either float or integer, designated by the metric setting.

 When the first word of the input table is equal to zero, this is considered the "NO COMMAND" condition. If a command were being sent, then the Command Word, word 0, would
reflect the command requested and not equal zero.
The data received from this "NO COMMAND" condition is:
Local:1:I.Ch1_NOCMD.CommandEcho = 0;
Local:1:I.Ch1_NOCMD.CommandStatus = Command Status (0);
Local:1:I.Ch1_NOCMD.ChannelStatus = Channel Statusword;
 Local:1:I.Ch1_NOCMD.ADConvertError = ERRORADCONVERT - A/D converter error
 Local:1:I.Ch1_NOCMD.ADFailure - A/D failure
 Local:1:I.Ch1_NOCMD.InMotion - scale in motion
 Local:1:I.Ch1_NOCMD.NoCalibration - no calibration has been done
 Local:1:I.Ch1_NOCMD.WriteError - error saving to non-volatile memory
 Local:1:I.Ch1_NOCMD.NVRDefaulted - set if module returned to default parameters.
 Local:1:I.Ch1_NOCMD.Enabled - channel is enabled
Local:1:I.Ch1_NOCMD.Spare1
Local:1:I.Ch1_NOCMD.GrossWeight
Local:1:I.Ch1_NOCMD.NetWeight;
Local:1:I.Ch1_NOCMD.MetricParameter
 Local:1:I.Ch1_NOCMD.NumDecPlaces_0
 Local:1:I.Ch1_NOCMD.NumDecPlaces_1
 Local:1:I.Ch1_NOCMD.NumDecPlaces_2
 Local:1:I.Ch1_NOCMD.DisplayInKg
Local:1:I.Ch1_NOCMD.Spare2
Local:1:I.Ch1_NOCMD.ADC_Counts
Local:1:I.Ch1_NOCMD.CalibrationType
Local:1:I.Ch1_NOCMD.FirmwareRev;
Local:1:I.Ch1_NOCMD.ModuleSerialNumber
Local:1:I.Ch1_NOCMD.ADC_ConversionCount
NOTE: If you have firmware version 2.3 or higher, there have been changes that are not reflected in the labels in the AOP files. These changes are:
In the Input table:
Local:1:I.Ch0_NOCMD.Spare1 is now the firmware version.
Local:1:I.Ch0_NOCMD.Spare2 is now the Calibration type.
Local:1:I.Ch0_NOCMD.CalibrationType and Local:1:I.Ch0_NOCMD.FirmwareRev are now Rate of Change (in format based on metric setting.

NOTE: The Gross weight and Net weight readings will be transferred in a format based on the Metric setting. In the sample program, channel 1 (scale 2) is set up in float format.

This rung is also sets the A_D_problem bit and Motion bit. These are conditions that could cause some commands to fail. The program will use these bits to prevent a command trying
to run if there is a failure condition present.

0 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 0

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

MetricParameter
Dest current_metric
Length 1

COP

current metric
setting

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus

COP

Default return
values with weight

in floating point
format

All commands for the second scale are identical to the first scale, except the location in the input/output tables will be offset by 16 words. That is, words 0-15 in the input/output tables
apply to scalel 1, and words 16-31 apply to scale 2.
Each command available to the 1769 module is shown in its own sub-routine. Not all commands are required to operate the module. Some commands require special hardware to fully
 operate.
The commands that should be included in all programs are:
WRITEMETRIC – Sets up the format for the data
READPARAM0 – Read some of parameters from module
READPARAM1 – Reads other set of parameters from the module
WRITEPARAM0 - Writes some of parameters to module
WRITEPARAM1 - Writes other set of parameters to the module
Calibration, Either
C2CALCMD - Calibration without the need of test weights. System must have C2 load cells.
Or
CALLOWCMD – Low end of a traditional calibration
CALHIGHCMD – High end of a traditional calibration
WRITENONVOLATILE – Saves setup to non-volatile memory

It is up to the user to determine what other commands they may require for their process.
The HI 1769-WS is a generic module for the Compact Logix system. Generic modules on this platform have a fixed number of input and output words, which are 16 bit integers. The HI
1769-WS module will have 32 words input and 32 words output, of which it uses the first 16 words for channel 0 and if it is a 2 channel module, the second 16 words for channel 1.
These two I/O files are the only means the PLC has of communicating with the weigh scale module, so all transactions, including weight readings, configuration, and tests must occur via
 these files.

The data types that can appear in the I/O files are:
16 bit integer
32 bit integer
32 bit IEEE float.
In the 32 bit types, they are split between two words, of which the least significant word comes first, followed by the most significant word.

The weight values in the HI 1769-WS are displayed as either 32 bit integers, or as 32 bit float depending on the value of the "METRIC" parameter (the METRIC parameter is explained in
 detail in the WRITE_METRIC routine.

This program demonstrates each command available for the HI 1769-WS module. All data tags, with the exception of the Local tags, are arbitrary and may not apply to a users setup.
For this program, the module is set up in slot 1, so all slot references will be accordingly.
Data tags Status_Return and ERROR_FLAG will be used throughout as a generic return location giving a return copy of the command number sent, status return (if any), and using
ERROR_FLAG as an error flag that can be monitored.
This program is set up to monitor the Metric setting to determine if the data is in float format or integer format. The user may not need both these forms of data, so can modify or delete
unnecessary tags.

This first rung will read the current metric setting any time there is no other command being run. Also, the 16 words of the input table for the module will be copied into an appropriate
location based on the format, either float or integer, designated by the metric setting.

 When the first word of the input table is equal to zero, this is considered the "NO COMMAND" condition. If a command were being sent, then the Command Word, word 0, would
reflect the command requested and not equal zero.
The data received from this "NO COMMAND" condition is:
Local:1:I.Ch1_NOCMD.CommandEcho = 0;
Local:1:I.Ch1_NOCMD.CommandStatus = Command Status (0);
Local:1:I.Ch1_NOCMD.ChannelStatus = Channel Statusword;
 Local:1:I.Ch1_NOCMD.ADConvertError = ERRORADCONVERT - A/D converter error
 Local:1:I.Ch1_NOCMD.ADFailure - A/D failure
 Local:1:I.Ch1_NOCMD.InMotion - scale in motion
 Local:1:I.Ch1_NOCMD.NoCalibration - no calibration has been done
 Local:1:I.Ch1_NOCMD.WriteError - error saving to non-volatile memory
 Local:1:I.Ch1_NOCMD.NVRDefaulted - set if module returned to default parameters.
 Local:1:I.Ch1_NOCMD.Enabled - channel is enabled
Local:1:I.Ch1_NOCMD.Spare1
Local:1:I.Ch1_NOCMD.GrossWeight
Local:1:I.Ch1_NOCMD.NetWeight;
Local:1:I.Ch1_NOCMD.MetricParameter
 Local:1:I.Ch1_NOCMD.NumDecPlaces_0
 Local:1:I.Ch1_NOCMD.NumDecPlaces_1
 Local:1:I.Ch1_NOCMD.NumDecPlaces_2
 Local:1:I.Ch1_NOCMD.DisplayInKg
Local:1:I.Ch1_NOCMD.Spare2
Local:1:I.Ch1_NOCMD.ADC_Counts
Local:1:I.Ch1_NOCMD.CalibrationType
Local:1:I.Ch1_NOCMD.FirmwareRev;
Local:1:I.Ch1_NOCMD.ModuleSerialNumber
Local:1:I.Ch1_NOCMD.ADC_ConversionCount
NOTE: If you have firmware version 2.3 or higher, there have been changes that are not reflected in the labels in the AOP files. These changes are:
In the Input table:
Local:1:I.Ch0_NOCMD.Spare1 is now the firmware version.
Local:1:I.Ch0_NOCMD.Spare2 is now the Calibration type.
Local:1:I.Ch0_NOCMD.CalibrationType and Local:1:I.Ch0_NOCMD.FirmwareRev are now Rate of Change (in format based on metric setting.

NOTE: The Gross weight and Net weight readings will be transferred in a format based on the Metric setting. In the sample program, channel 1 (scale 2) is set up in float format.

This rung is also sets the A_D_problem bit and Motion bit. These are conditions that could cause some commands to fail. The program will use these bits to prevent a command trying
to run if there is a failure condition present.

MainRoutine - Ladder Diagram Page 54
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:44 PM

Total number of rungs in routine: 18 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

ChannelStatus
Dest default_return_flt
Length 1

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Local:1:I.Ch1_NOCMD.
ChannelStatus.0

Local:1:I.Ch1_NOCMD.
ChannelStatus.1

scale input problem
A_D_problem

Local:1:I.Ch1_NOCMD.
ChannelStatus.6

scale in motion
Motion

This rung will start the routine to run the C2 calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

1 /

scale input problem
A_D_problem

/

scale in motion
Motion

DO C2 CAL
control_bits[0]

Jump To Subroutine
Routine Name C2_CAL

JSR
DO C2 CALIBRATION

This rung will start the routine to run the C2 calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

This rung will start the routine to run the C2 search.

2

DO C2 SEARCH
control_bits[2]

Jump To Subroutine
Routine Name C2_SEARCH

JSR

CHECK FOR NUMBER OF
C2 LOAD CELLS ON

SYSTEM

This rung will start the routine to run the C2 search.

This rung will start the routine to run the Cal High portion of the traditional calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

3 /

scale input problem
A_D_problem

/

scale in motion
Motion

DO CAL HIGH
control_bits[4]

Jump To Subroutine
Routine Name CAL_HIGH

JSR

DO HIGH POINT IN
HARD CALIBRATION

This rung will start the routine to run the Cal High portion of the traditional calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

This rung will start the routine to run the Cal Low portion of the traditional calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

4 /

scale input problem
A_D_problem

/

scale in motion
Motion

DO CAL LOW
control_bits[6]

Jump To Subroutine
Routine Name CAL_LOW

JSR

DO LOW POINT OF HARD
CALIBRATION

This rung will start the routine to run the Cal Low portion of the traditional calibration.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

This rung will start the routine to set the module to default settings.

5

SET TO DEFAULTS
control_bits[8]

Jump To Subroutine
Routine Name DEFAULTS

JSR

SETS MODULE BACK TO
DEFAULT SETTINGS

This rung will start the routine to set the module to default settings.

MainRoutine - Ladder Diagram Page 55
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:44 PM

Total number of rungs in routine: 18 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

This rung will start the routine to run the IT System test.

6

DO IT TEST
control_bits1[0]

Jump To Subroutine
Routine Name IT_SYSTEM_TEST

JSR

RUN WEIGH SYSTEM
TEST

This rung will start the routine to run the IT System test.

This rung will start the routine to read parameter 0 data.

7

DO READ PARAM 0
control_bits[10]

Jump To Subroutine
Routine Name READ_PARAMETER_0

JSR

READ PARAMETER 0
VALUES

This rung will start the routine to read parameter 0 data.

This rung will start the routine to read parameter 1 data.

8

DO READ PARAM 1
control_bits[12]

Jump To Subroutine
Routine Name READ_PARAMETER_1

JSR

READ PARAMETER 1
VALUES

This rung will start the routine to read parameter 1 data.

This will start the routine to read load cell serial numbers.

9

DO READ SERIAL NUM
control_bits[14]

Jump To Subroutine
Routine Name READ_SERIAL_NUMBER

JSR

READS SERIAL NUMBER
FROM C2 LOAD CELLS

This will start the routine to read load cell serial numbers.

This will start the routine to reload non-volatile memory.

10

DO RELOD NON
VOLATILE
control_bits[16]

Jump To Subroutine
Routine Name RELOAD_NON_VOLATILE

JSR

RESTORE SETTINGS
FROM NON-VOLATILE

MEMORY

This will start the routine to reload non-volatile memory.

This will start the routine to run the stability test.

11

DO STABILITY TEST
control_bits1[3]

Jump To Subroutine
Routine Name STABILITY_TEST

JSR

ALLOWS CHECK OF
STABILITY OF SYSTEM

This will start the routine to run the stability test.

This will start the routine to tare the net weight.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

12 /

scale input problem
A_D_problem

/

scale in motion
Motion

DO TARE
control_bits[18]

Jump To Subroutine
Routine Name TARE

JSR

TARE THE CURRENT NET
WEIGHT

This will start the routine to tare the net weight.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

This will start the routine to write the metric setting.

13

DO WRITE METRIC
control_bits[20]

Jump To Subroutine
Routine Name WRITE_METRIC

JSR

WRITE NET METRIC
SETTING TO THE

MODULE

This will start the routine to write the metric setting.

MainRoutine - Ladder Diagram Page 56
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:44 PM

Total number of rungs in routine: 18 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

This will start the routine to write to non-volatile memory.

14

DO WRITE NON
VOLATILE
control_bits[22]

Jump To Subroutine
Routine Name WRITE_NON_VOLATILE

JSR

SAVE CURRENT
SETTINGS TO NON
VOLATILE MEMORY

This will start the routine to write to non-volatile memory.

This will start the routine to write the parameter 0 data.

15

DO WRITE PARAM 0
control_bits[24]

Jump To Subroutine
Routine Name WRITE_PARAMETERS_0

JSR

WRITES NEW PARAMETER
0 VALUES

This will start the routine to write the parameter 0 data.

This will start the routine to write the parameter 1 data.

16

DO WRITE PARAM 1
control_bits[26]

Jump To Subroutine
Routine Name WRITE_PARAMETERS_1

JSR

WRITE PARAMETER 1
VALUES TO MODULE

This will start the routine to write the parameter 1 data.

This will start the routine to run the zero command.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

17 /

scale input problem
A_D_problem

/

scale in motion
Motion

DO ZERO
control_bits[28]

Jump To Subroutine
Routine Name ZERO

JSR

ZERO THE CURRENT
GROSS WEIGHT

This will start the routine to run the zero command.

This rung is conditioned with the A_D_problem and Motion bits. If either of these conditions is present, the command would fail, so this will prevent the command from running if failure
condition is present.

(End)

READ_PARAMETER_0 - Ladder Diagram Page 57
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:44 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READ PARAMETER 0 VALUES
The READPARAM0 command will read a block of parameters from the module. These are the same parameters set using a "WRITEPARAM0" command. They include:
Word 18 = ChanActive - turns the channel on/off
Word 19 = Metric - metric setting determines format of data.
Word 20 = Waversaver - amount of vibration immunity.
 Settings: 0 = No Waversaver
 1 = 4 Hertz
 2 = 2 Hertz
 3 = 1 Hertz
 4 = 0.5 Hertz
 5 = 0.25 Hertz
Word 21 = NumAverages - number of readings averaged together
Word 22 = ZeroTrackEnable - AutoZero tracking on/off
Word 23 = ROC Time Base
Word 24 = AutoZeroTolerance, LSW - Auto Zero Tracking tolerance
Word 25 = AutoZeroTolerance, MSW - Auto Zero Tracking tolerance
Word 26 = Motion Tolerance LSW - used to determine motion
Word 27 = Motion Tolerance MSW - used to determine motion
Word 28 = Zero Tolerance LSW - tolerance for zero command
Word 29 = Zero Tolerance MSW - tolerance for zero command
Word 30 = unused
Word 31 = unused

This rung will initiate the READPARAM0 command by writing the command number, #105, to the output table, LOCAL:1:O.DATA[16].

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START READ PARAM 0
control_bits[11]

Move
Source 105

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[6]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The READPARAM0 command will read a block of parameters from the module. These are the same parameters set using a "WRITEPARAM0" command. They include:
Word 18 = ChanActive - turns the channel on/off
Word 19 = Metric - metric setting determines format of data.
Word 20 = Waversaver - amount of vibration immunity.
 Settings: 0 = No Waversaver
 1 = 4 Hertz
 2 = 2 Hertz
 3 = 1 Hertz
 4 = 0.5 Hertz
 5 = 0.25 Hertz
Word 21 = NumAverages - number of readings averaged together
Word 22 = ZeroTrackEnable - AutoZero tracking on/off
Word 23 = ROC Time Base
Word 24 = AutoZeroTolerance, LSW - Auto Zero Tracking tolerance
Word 25 = AutoZeroTolerance, MSW - Auto Zero Tracking tolerance
Word 26 = Motion Tolerance LSW - used to determine motion
Word 27 = Motion Tolerance MSW - used to determine motion
Word 28 = Zero Tolerance LSW - tolerance for zero command
Word 29 = Zero Tolerance MSW - tolerance for zero command
Word 30 = unused
Word 31 = unused

This rung will initiate the READPARAM0 command by writing the command number, #105, to the output table, LOCAL:1:O.DATA[16].

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

READ_PARAMETER_0 - Ladder Diagram Page 58
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:44 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READ PARAMETER 0 VALUES
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
It will also copy all 14 words of data into a Read_Flt_param_0 or Read_Int_param_0 tag, based on the Metric setting.

NOTE: THE TOLERANCE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 105

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest Read_Flt_param_0
Length 1

COP

parameter 0 values
read from module
with float values

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest Read_Int_param_0
Length 1

COP

read parameter 0
values from module

using integer
values.

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO READ PARAM 0
control_bits[10]

U

START READ PARAM 0
control_bits[11]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
It will also copy all 14 words of data into a Read_Flt_param_0 or Read_Int_param_0 tag, based on the Metric setting.

NOTE: THE TOLERANCE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO READ PARAM 0
control_bits[10]

L

START READ PARAM 0
control_bits[11]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

READ_PARAMETER_1 - Ladder Diagram Page 59
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:44 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READ PARAMETER 1 VALUES
The READPARAM1 command will read a block of parameters from the module. These are the same parameters set using a "WRITEPARAM1" command plus some non-user settable
calibration parameters. They include:
Word 18 = Tareweight LSW - Tare weight value
Word 19 = Tareweight MSW - Tare weight value
Word 20 = Span Weight LSW - used for traditional Cal High Cmd
Word 21 = Span Weight MSW - used for traditional Cal High Cmd
Word 22 = CalLowWeight LSW - used for traditional Cal Low Cmd and C2 reference point
Word 23 = CalLowWeight MSW - used for traditional Cal Low Cmd and C2 reference point
Word 24 = Zerocount LSW - A/D counts at last ZEROCMD (read only)
Word 25 = Zerocount MSW - A/D counts at last ZEROCMD (read only)
Word 26 = Calzerocount LSW - A/D counts at zero weight obtained at the last calibration (read only)
Word 27 = Calzerocount MSW - A/D counts at zero weight obtained at the last calibration (read only)
Word 28 = CalLowCount LSW - A/D counts at CalLowWeight (read only)
Word 29 = CalLowCount MSW - A/D counts at CalLowWeight (read only)
Word 30 = CalHighCount LSW - A/D counts at span weight (traditional cal only) (read only)
Word 31 = CalHighCount MSW - A/D counts at span weight (traditional cal only) (read only)

This rung will initiate the READPARAM1 command by writing the command number, #106, to the output table, LOCAL:1:O.DATA[16].

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START READ PARAM 1
control_bits[13]

Move
Source 106

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[7]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The READPARAM1 command will read a block of parameters from the module. These are the same parameters set using a "WRITEPARAM1" command plus some non-user settable
calibration parameters. They include:
Word 18 = Tareweight LSW - Tare weight value
Word 19 = Tareweight MSW - Tare weight value
Word 20 = Span Weight LSW - used for traditional Cal High Cmd
Word 21 = Span Weight MSW - used for traditional Cal High Cmd
Word 22 = CalLowWeight LSW - used for traditional Cal Low Cmd and C2 reference point
Word 23 = CalLowWeight MSW - used for traditional Cal Low Cmd and C2 reference point
Word 24 = Zerocount LSW - A/D counts at last ZEROCMD (read only)
Word 25 = Zerocount MSW - A/D counts at last ZEROCMD (read only)
Word 26 = Calzerocount LSW - A/D counts at zero weight obtained at the last calibration (read only)
Word 27 = Calzerocount MSW - A/D counts at zero weight obtained at the last calibration (read only)
Word 28 = CalLowCount LSW - A/D counts at CalLowWeight (read only)
Word 29 = CalLowCount MSW - A/D counts at CalLowWeight (read only)
Word 30 = CalHighCount LSW - A/D counts at span weight (traditional cal only) (read only)
Word 31 = CalHighCount MSW - A/D counts at span weight (traditional cal only) (read only)

This rung will initiate the READPARAM1 command by writing the command number, #106, to the output table, LOCAL:1:O.DATA[16].

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

READ_PARAMETER_1 - Ladder Diagram Page 60
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:45 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READ PARAMETER 1 VALUES
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
It will also copy all 14 words into a Read_Flt_param_1 or Read_Int_param_1 tag, based on the Metric setting.

NOTE: THE WEIGHT VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 106

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest Read_Flt_param_1
Length 1

COP

parameter 1 values
read from module

using floats.

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest Read_Int_param_1
Length 1

COP

parameter 1 values
read from module

using integers.

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO READ PARAM 1
control_bits[12]

U

START READ PARAM 1
control_bits[13]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
It will also copy all 14 words into a Read_Flt_param_1 or Read_Int_param_1 tag, based on the Metric setting.

NOTE: THE WEIGHT VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO READ PARAM 1
control_bits[12]

L

START READ PARAM 1
control_bits[13]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

READ_SERIAL_NUMBER - Ladder Diagram Page 61
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:45 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READS SERIAL NUMBER FROM C2 LOAD CELLS
The READC2SERIALNUM command will cause the module to read the serial number of the C2 load cell selected. The C2SEARCH command must be run sometime prior to running
this command, but does not need to be immediately prior and only needs to be run once.

This rung will initiate the READC2SERIALNUM by sending the command number, #112 to the module. This command does require the sensor number to be sent at the same time.
The command number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table and the sensor number will be placed into the second word (LOCAL:1:O.DATA[17]).
For this program, the sensor number selected will be copied from data tag sensor_sel.

The data read from the READC2SERIALNUM command contains:
word 18 - word 25 = serial number read as ASCII characters
word 26 = sensitivity LSW - mv/v rating of load cell
word 27 = sensitivity MSW - mv/v rating of load cell
word 28 = capacity LSW = capacity of load cell
word 29 = capacity MSW = capacity of load cell
word 30 = unused
word 31 = unused

NOTE: SENSITIVITY IS AN ITEGER WITH 4 DECIMAL PLACES AND CAPACITY IS AN INTEGER WITH ZERO DECIMAL PLACES AND UNITS OF POUNDS.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START READ SERIAL
NUM
control_bits[15]

Copy File
Source sensor_sel
Dest Local:1:O.Ch1.Data01
Length 1

COP

Move
Source 112

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[8]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The READC2SERIALNUM command will cause the module to read the serial number of the C2 load cell selected. The C2SEARCH command must be run sometime prior to running
this command, but does not need to be immediately prior and only needs to be run once.

This rung will initiate the READC2SERIALNUM by sending the command number, #112 to the module. This command does require the sensor number to be sent at the same time.
The command number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table and the sensor number will be placed into the second word (LOCAL:1:O.DATA[17]).
For this program, the sensor number selected will be copied from data tag sensor_sel.

The data read from the READC2SERIALNUM command contains:
word 18 - word 25 = serial number read as ASCII characters
word 26 = sensitivity LSW - mv/v rating of load cell
word 27 = sensitivity MSW - mv/v rating of load cell
word 28 = capacity LSW = capacity of load cell
word 29 = capacity MSW = capacity of load cell
word 30 = unused
word 31 = unused

NOTE: SENSITIVITY IS AN ITEGER WITH 4 DECIMAL PLACES AND CAPACITY IS AN INTEGER WITH ZERO DECIMAL PLACES AND UNITS OF POUNDS.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

READ_SERIAL_NUMBER - Ladder Diagram Page 62
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:45 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

READS SERIAL NUMBER FROM C2 LOAD CELLS
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
It will also copy all 14 words into a serial_number tag.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 112

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest serial_number
Length 1

COP

serial number of
selected load cell

along with
sensitivity and

capacity.

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO READ SERIAL NUM
control_bits[14]

U

START READ SERIAL
NUM
control_bits[15]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
It will also copy all 14 words into a serial_number tag.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO READ SERIAL NUM
control_bits[14]

L

START READ SERIAL
NUM
control_bits[15]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

RELOAD_NON_VOLATILE - Ladder Diagram Page 63
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:45 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

RESTORE SETTINGS FROM NON-VOLATILE MEMORY
The RELOADNONVOLATILE command will restore the users previously saved configuration of the module from non-volatile memory in the module.

This rung will initiate the Reload by sending the command number, #16 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START RELOAD NON
VOLATILE

control_bits[17]
Move
Source 16

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[9]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The RELOADNONVOLATILE command will restore the users previously saved configuration of the module from non-volatile memory in the module.

This rung will initiate the Reload by sending the command number, #16 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 16

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO RELOD NON
VOLATILE
control_bits[16]

U

START RELOAD NON
VOLATILE

control_bits[17]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

There is no error status returned for this command so the status returned would only be used to verify what command was run last.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

RELOAD_NON_VOLATILE - Ladder Diagram Page 64
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:46 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

RESTORE SETTINGS FROM NON-VOLATILE MEMORY
Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO RELOD NON
VOLATILE
control_bits[16]

L

START RELOAD NON
VOLATILE

control_bits[17]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

STABILITY_TEST - Ladder Diagram Page 65
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:46 PM

Total number of rungs in routine: 4 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

ALLOWS CHECK OF STABILITY OF SYSTEM
The STABILITY test needs the IT summing box to perform all its functions. This test will turn on a single input for the unit and report its weight in place of the normal weight readings in
the input table. Without the IT summing box, the unit can turn on the internal reference voltage only.
This test will allow the user to monitor the weight reading for drift or excessive fluctuation.

The command number for this is #107. This command requires the selection of which input to monitor. The command number will be placed into the first word (LOCAL:1:O.DATA[16])
of the output table and the input selection will be placed in the next word (LOCAL:1:O.DATA[17]).
The return from this command will be the same as the NO COMMAND except the weight readings will reflect the reading based only on the input selected. The selections are:
0 = Internal reference voltage - checks if the input circuits are stable
1-4 = load cell selection - checks if selected l/c is stable
5 = reference voltage from IT JBOX - checks if cable is causing noise

All weight values will then be affected by this selection during the time the command number is left unchanged in the output table.

This rung will copy the selection into the output table at LOCAL:1:O.DATA[17] (from signal_select), and the command number for the STABILITY test, command #107, into word
LOCAL:1:O.DATA[16]. The user must have the selection value entered into the signal_select tag prior to running this routine, otherwise an error could occur.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START STABILITY TEST
control_bits1[4]

Copy File
Source signal_select
Dest Local:1:O.Ch1.Data01
Length 1

COP

Move
Source 107

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[10]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The STABILITY test needs the IT summing box to perform all its functions. This test will turn on a single input for the unit and report its weight in place of the normal weight readings in
the input table. Without the IT summing box, the unit can turn on the internal reference voltage only.
This test will allow the user to monitor the weight reading for drift or excessive fluctuation.

The command number for this is #107. This command requires the selection of which input to monitor. The command number will be placed into the first word (LOCAL:1:O.DATA[16])
of the output table and the input selection will be placed in the next word (LOCAL:1:O.DATA[17]).
The return from this command will be the same as the NO COMMAND except the weight readings will reflect the reading based only on the input selected. The selections are:
0 = Internal reference voltage - checks if the input circuits are stable
1-4 = load cell selection - checks if selected l/c is stable
5 = reference voltage from IT JBOX - checks if cable is causing noise

All weight values will then be affected by this selection during the time the command number is left unchanged in the output table.

This rung will copy the selection into the output table at LOCAL:1:O.DATA[17] (from signal_select), and the command number for the STABILITY test, command #107, into word
LOCAL:1:O.DATA[16]. The user must have the selection value entered into the signal_select tag prior to running this routine, otherwise an error could occur.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, however, the weights are single input readings instead of true
weight readings. Since these are not true weight readings, they will not be copied to the "default_return_flt or default_return_int", but to stability_flt or stability_int tag, based on the Metric
 setting. This will continue until the "STOP STABILITY" bit is trigger by the user.
If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 107

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest Stability_float
Length 1

COP

results of stability
test in float format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest Stability_int
Length 1

COP

results of stability
test in integer

format

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, however, the weights are single input readings instead of true
weight readings. Since these are not true weight readings, they will not be copied to the "default_return_flt or default_return_int", but to stability_flt or stability_int tag, based on the Metric
 setting. This will continue until the "STOP STABILITY" bit is trigger by the user.
If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

STABILITY_TEST - Ladder Diagram Page 66
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:46 PM

Total number of rungs in routine: 4 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

ALLOWS CHECK OF STABILITY OF SYSTEM
This rung will stop the stability test. When either the STOP STABILITY bit or the ERROR_FLAG is high, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any
control bits are cleared. This will stop the stability test and resume normal operation.

2

STOP STABILITY TEST
control_bits1[5]

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

STOP STABILITY TEST
control_bits1[5]

U

START STABILITY TEST
control_bits1[4]

U

DO STABILITY TEST
control_bits1[3]

This rung will stop the stability test. When either the STOP STABILITY bit or the ERROR_FLAG is high, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any
control bits are cleared. This will stop the stability test and resume normal operation.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

3

DO STABILITY TEST
control_bits1[3]

L

START STABILITY TEST
control_bits1[4]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

TARE - Ladder Diagram Page 67
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:46 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

TARE THE CURRENT NET WEIGHT
The TARE CMD will cause the current net weight to be set to zero, providing the scale is not in motion and there is not an A/D error.

This rung will initiate the Tare by sending the command number, #2 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START TARE
control_bits[19]

Move
Source 2

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[11]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The TARE CMD will cause the current net weight to be set to zero, providing the scale is not in motion and there is not an A/D error.

This rung will initiate the Tare by sending the command number, #2 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

TARE - Ladder Diagram Page 68
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:47 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

TARE THE CURRENT NET WEIGHT
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 2

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO TARE
control_bits[18]

U

START TARE
control_bits[19]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO TARE
control_bits[18]

L

START TARE
control_bits[19]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

WRITE_METRIC - Ladder Diagram Page 69
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:47 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITE NET METRIC SETTING TO THE MODULE
The metric setting determines the format of the weight values. The metric setting is the sum of 3 fields:
Bit 7 will determine if the weight values are in lbs or kgs.
Bit 7 = 1: the weight values are displayed in kilograms.
 Bit 7 = 0: weight values are in lbs. (Default).

Bit 6 will determine if the weight values are in integer or floating-point format.
Bit 6 = 1: the weight values are displayed as a floating point.
Bit 6 = 0, weight values are displayed as integer. (Default)

Bits 0, 1, & 2 – this is a binary value to determine the number of decimal places transferred. This only applies if bit 6 = 0.

This routine will write a new metric setting to the module. This involves sending the WRITEMETRIC command number and the new metric value. The command number for this is #3.
This command requires the new metric value at the same time. The command number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table and the new metric
value will be placed in the forth word (LOCAL:1:O.DATA[19]). All weight values will then be affected by this new metric setting, including values being written after this takes effect.

The weight values affected by the metric setting are:
Weight readings, both Gross and Net read during a “NO COMMAND” condition and during other routines returning these values;
The AutoZero Tolerance, Motion Tolerance, and Zero Tolerance in both the WRITE_PARAMETER_0 and READ_PARAMETER_0 routines;
Tare weight, Span weight, and CalLow weight in both the WRITE_PARAMETER_1 and READ_PARAMETER_1 routines.
Weight values read during the INTEGRATED_TECHNICIAN routine.

This rung will copy the new metric value into the output table at word LOCAL:1:O.DATA[19](from Metric tag), and the command number for setting a new metric setting, command #3,
into word LOCAL:1:O.DATA[16] of the output table. The user must have the new value entered into the Metric tag prior to running this routine, otherwise unexpected results could
occur.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START WRITE METRIC
control_bits[21]

Copy File
Source Metric
Dest Local:1:O.Ch1.Data03
Length 1

COP

Move
Source 3

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[12]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The metric setting determines the format of the weight values. The metric setting is the sum of 3 fields:
Bit 7 will determine if the weight values are in lbs or kgs.
Bit 7 = 1: the weight values are displayed in kilograms.
 Bit 7 = 0: weight values are in lbs. (Default).

Bit 6 will determine if the weight values are in integer or floating-point format.
Bit 6 = 1: the weight values are displayed as a floating point.
Bit 6 = 0, weight values are displayed as integer. (Default)

Bits 0, 1, & 2 – this is a binary value to determine the number of decimal places transferred. This only applies if bit 6 = 0.

This routine will write a new metric setting to the module. This involves sending the WRITEMETRIC command number and the new metric value. The command number for this is #3.
This command requires the new metric value at the same time. The command number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table and the new metric
value will be placed in the forth word (LOCAL:1:O.DATA[19]). All weight values will then be affected by this new metric setting, including values being written after this takes effect.

The weight values affected by the metric setting are:
Weight readings, both Gross and Net read during a “NO COMMAND” condition and during other routines returning these values;
The AutoZero Tolerance, Motion Tolerance, and Zero Tolerance in both the WRITE_PARAMETER_0 and READ_PARAMETER_0 routines;
Tare weight, Span weight, and CalLow weight in both the WRITE_PARAMETER_1 and READ_PARAMETER_1 routines.
Weight values read during the INTEGRATED_TECHNICIAN routine.

This rung will copy the new metric value into the output table at word LOCAL:1:O.DATA[19](from Metric tag), and the command number for setting a new metric setting, command #3,
into word LOCAL:1:O.DATA[16] of the output table. The user must have the new value entered into the Metric tag prior to running this routine, otherwise unexpected results could
occur.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

WRITE_METRIC - Ladder Diagram Page 70
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:47 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITE NET METRIC SETTING TO THE MODULE
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.
NOTE: There are two default return tags, one that has the weight values in float format and one with the values in integer format. Which is used will depend on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.
If the command status return is a value of 3, then the command failed because the new metric setting is not a valid value.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 3

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

MetricParameter
Dest current_metric
Length 1

COP

current metric
setting

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO WRITE METRIC
control_bits[20]

U

START WRITE METRIC
control_bits[21]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.
NOTE: There are two default return tags, one that has the weight values in float format and one with the values in integer format. Which is used will depend on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.
If the command status return is a value of 3, then the command failed because the new metric setting is not a valid value.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO WRITE METRIC
control_bits[20]

L

START WRITE METRIC
control_bits[21]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

WRITE_NON_VOLATILE - Ladder Diagram Page 71
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:47 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

SAVE CURRENT SETTINGS TO NON VOLATILE MEMORY
The WRITENONVOLATILE command will save the users configuration of the module to non-volatile memory in the module. This is not normally needed, as the commands that write
parameters will automatically save the values to non-volatile memory. The exceptions are the Zero, Tare, and the WriteMetric commands.

This rung will initiate the WRITENONVOLATILE command by sending the command number, #4, to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START WRITE NON
VOLATILE

control_bits[23]
Move
Source 4

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[13]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The WRITENONVOLATILE command will save the users configuration of the module to non-volatile memory in the module. This is not normally needed, as the commands that write
parameters will automatically save the values to non-volatile memory. The exceptions are the Zero, Tare, and the WriteMetric commands.

This rung will initiate the WRITENONVOLATILE command by sending the command number, #4, to the module. This command does not require any data sent at the same time. The
command number will be placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

WRITE_NON_VOLATILE - Ladder Diagram Page 72
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:48 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

SAVE CURRENT SETTINGS TO NON VOLATILE MEMORY
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 4

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO WRITE NON
VOLATILE
control_bits[22]

U

START WRITE NON
VOLATILE

control_bits[23]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO WRITE NON
VOLATILE
control_bits[22]

L

START WRITE NON
VOLATILE

control_bits[23]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

WRITE_PARAMETERS_0 - Ladder Diagram Page 73
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:48 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITES NEW PARAMETER 0 VALUES
The WRITEPARAM0 command will write a block of parameters to the module. These parameters are used for setting up the operation of the module. They include:
Word 18 = ChanActive - turns the channel on/off
Word 19 = Metric - metric setting determines format of data.
Word 20 = Waversaver - amount of vibration immunity.
 Settings: 0 = No Waversaver
 1 = 4 Hertz
 2 = 2 Hertz
 3 = 1 Hertz
 4 = 0.5 Hertz
 5 = 0.25 Hertz
Word 21 = NumAverages - number of readings averaged together
Word 22 = ZeroTrackEnable - AutoZero tracking on/off
Word 23 = ROC Time Base
Word 24 = AutoZeroTolerance, LSW - Auto Zero Tracking tolerance
Word 25 = AutoZeroTolerance, MSW - Auto Zero Tracking tolerance
Word 26 = Motion Tolerance LSW - used to determine motion
Word 27 = Motion Tolerance MSW - used to determine motion
Word 28 = Zero Tolerance LSW - tolerance for zero command
Word 29 = Zero Tolerance MSW - tolerance for zero command
Word 30 = unused
Word 31 = unused

NOTE: THE TOLERANCE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING. IF THE METRIC SETTING IS SET FOR FLOATING POINT FORMAT,
THESE VALUES MUST BE WRITTEN IN THE FLOATING POINT FORMAT TO BE VALID.

These parameters must be entered into the output table prior to entering the command number.

This rung will copy 16 words containing the command number, #103, and the above words to the output table, LOCAL:1:O.DATA[16] through LOCAL:1:O.DATA[31]. This program is
using the “write_flt_param_0” or “write_int_param_0” data tag, based on the Metric setting, to copy the data from. All the parameter data must be valid to prevent an error. If an error
occurs, the Command Status return will contain the offset location indicating which parameter was in error.
NOTE: You cannot write a single parameter. All parameters will be written at the same time.
To write a single parameter, first do a READPARAM0 command, copy the parameters read to the output, change the parameter value you need to change, then set the command word
to initiate the write.

NOTE: THE METRIC PARAMETER IS APPLIED LAST, WHICH MEANS THAT ALL PARAMETERS ARE INTERPRETED ACCORDING TO THE CURRENT METRIC VALUE AT THE
TIME OF THE WRITE. THIS ALSO MEANS THAT THE PARAMETERS TAG USED WILL BE BASED ON THE CURRENT METRIC SETTING, SO BE SURE TO USE THE TAG THAT
WILL BE WRITTEN. EXAMPLE: IF THE CURRENT METRIC SETTING IS INTEGER, AND YOU ARE GOING TO CHANGE IT TO FLOAT, YOUR WRITE PARAMETERS WILL USE
THE INTEGER TAG, NOT THE FLOAT TAG FOR THE WRITE. IF YOU CHANGE THE METRIC SETTING IN THE INTEGER TAG AND WRITE IT, THE NEXT WRITE WILL USE THE
FLOAT TAG SINCE THE METRIC SETTING WAS CHANGED.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START WRITE PARAM 0
control_bits[25] current_metric.6

Copy File
Source write_flt_param_0
Dest Local:1:O.Ch1.Data02
Length 14

COP

/
current_metric.6

Copy File
Source write_int_param_0
Dest Local:1:O.Ch1.Data02
Length 14

COP

Move
Source 103

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[14]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The WRITEPARAM0 command will write a block of parameters to the module. These parameters are used for setting up the operation of the module. They include:
Word 18 = ChanActive - turns the channel on/off
Word 19 = Metric - metric setting determines format of data.
Word 20 = Waversaver - amount of vibration immunity.
 Settings: 0 = No Waversaver
 1 = 4 Hertz
 2 = 2 Hertz
 3 = 1 Hertz
 4 = 0.5 Hertz
 5 = 0.25 Hertz
Word 21 = NumAverages - number of readings averaged together
Word 22 = ZeroTrackEnable - AutoZero tracking on/off
Word 23 = ROC Time Base
Word 24 = AutoZeroTolerance, LSW - Auto Zero Tracking tolerance
Word 25 = AutoZeroTolerance, MSW - Auto Zero Tracking tolerance
Word 26 = Motion Tolerance LSW - used to determine motion
Word 27 = Motion Tolerance MSW - used to determine motion
Word 28 = Zero Tolerance LSW - tolerance for zero command
Word 29 = Zero Tolerance MSW - tolerance for zero command
Word 30 = unused
Word 31 = unused

NOTE: THE TOLERANCE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING. IF THE METRIC SETTING IS SET FOR FLOATING POINT FORMAT,
THESE VALUES MUST BE WRITTEN IN THE FLOATING POINT FORMAT TO BE VALID.

These parameters must be entered into the output table prior to entering the command number.

This rung will copy 16 words containing the command number, #103, and the above words to the output table, LOCAL:1:O.DATA[16] through LOCAL:1:O.DATA[31]. This program is
using the “write_flt_param_0” or “write_int_param_0” data tag, based on the Metric setting, to copy the data from. All the parameter data must be valid to prevent an error. If an error
occurs, the Command Status return will contain the offset location indicating which parameter was in error.
NOTE: You cannot write a single parameter. All parameters will be written at the same time.
To write a single parameter, first do a READPARAM0 command, copy the parameters read to the output, change the parameter value you need to change, then set the command word
to initiate the write.

NOTE: THE METRIC PARAMETER IS APPLIED LAST, WHICH MEANS THAT ALL PARAMETERS ARE INTERPRETED ACCORDING TO THE CURRENT METRIC VALUE AT THE
TIME OF THE WRITE. THIS ALSO MEANS THAT THE PARAMETERS TAG USED WILL BE BASED ON THE CURRENT METRIC SETTING, SO BE SURE TO USE THE TAG THAT
WILL BE WRITTEN. EXAMPLE: IF THE CURRENT METRIC SETTING IS INTEGER, AND YOU ARE GOING TO CHANGE IT TO FLOAT, YOUR WRITE PARAMETERS WILL USE
THE INTEGER TAG, NOT THE FLOAT TAG FOR THE WRITE. IF YOU CHANGE THE METRIC SETTING IN THE INTEGER TAG AND WRITE IT, THE NEXT WRITE WILL USE THE
FLOAT TAG SINCE THE METRIC SETTING WAS CHANGED.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

WRITE_PARAMETERS_0 - Ladder Diagram Page 74
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:48 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITES NEW PARAMETER 0 VALUES
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the "READPARAM0" returns, so these words will be copied to the Read_Flt_param_0 or
Read_Int_param_0 tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return. The status returned, if not zero, will be an indication of which word location is invalid.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 103

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest Read_Flt_param_0
Length 1

COP

parameter 0 values
read from module
with float values

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest Read_Int_param_0
Length 1

COP

read parameter 0
values from module

using integer
values.

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO WRITE PARAM 0
control_bits[24]

U

START WRITE PARAM 0
control_bits[25]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the "READPARAM0" returns, so these words will be copied to the Read_Flt_param_0 or
Read_Int_param_0 tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return. The status returned, if not zero, will be an indication of which word location is invalid.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO WRITE PARAM 0
control_bits[24]

L

START WRITE PARAM 0
control_bits[25]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

WRITE_PARAMETERS_1 - Ladder Diagram Page 75
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:48 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITE PARAMETER 1 VALUES TO MODULE
The WRITEPARAM1 command will write a block of parameters to the module. These parameters are used for setting up the operation of the module. They include:
Word 18 = Tareweight LSW - Tare weight value
Word 19 = Tareweight MSW - Tare weight value
Word 20 = Span Weight LSW - used for traditional Cal High Cmd
Word 21 = Span Weight MSW - used for traditional Cal High Cmd
Word 22 = CalLowWeight LSW - used for traditional Cal Low Cmd and C2 reference point
Word 23 = CalLowWeight MSW - used for traditional Cal Low Cmd and C2 reference point
Word 24 = unused
Word 25 = unused
Word 26 = unused
Word 27 = unused
Word 28 = unused
Word 29 = unused
Word 30 = unused
Word 31 = unused

NOTE: THESE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING. IF THE METRIC SETTING IS SET FOR FLOATING POINT FORMAT, THESE
VALUES MUST BE WRITTEN IN THE FLOATING POINT FORMAT TO BE VALID.

These parameters must be entered into the output table prior to entering the command number.

This rung will copy 6 words containing the parameter values to the output table, LOCAL:1:O.Data[18], and the
command number, #104, to the output table, LOCAL:1:O.DATA[16]. This program is using write_flt_param_0 or write_int_param_0, based on the Metric setting, to copy the data from.
All the parameter data must be valid to prevent an error. If an error occurs, the Command Status return will contain the offset location indicating which parameter was in error.
NOTE: You cannot write a single parameter. All parameters will be written at the same time.
To write a single parameter, first do a READPARAM1 command, copy the parameters read to the output, change the parameter value you need to change, then set the command word
to initiate the write.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START WRITE PARAM 1
control_bits[27] current_metric.6

Copy File
Source write_flt_param_1
Dest Local:1:O.Ch1.Data02
Length 6

COP

/
current_metric.6

Copy File
Source write_int_param_1
Dest Local:1:O.Ch1.Data02
Length 6

COP

Move
Source 104

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[15]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The WRITEPARAM1 command will write a block of parameters to the module. These parameters are used for setting up the operation of the module. They include:
Word 18 = Tareweight LSW - Tare weight value
Word 19 = Tareweight MSW - Tare weight value
Word 20 = Span Weight LSW - used for traditional Cal High Cmd
Word 21 = Span Weight MSW - used for traditional Cal High Cmd
Word 22 = CalLowWeight LSW - used for traditional Cal Low Cmd and C2 reference point
Word 23 = CalLowWeight MSW - used for traditional Cal Low Cmd and C2 reference point
Word 24 = unused
Word 25 = unused
Word 26 = unused
Word 27 = unused
Word 28 = unused
Word 29 = unused
Word 30 = unused
Word 31 = unused

NOTE: THESE VALUES ARE FORMATTED ACCORDING TO THE CURRENT METRIC SETTING. IF THE METRIC SETTING IS SET FOR FLOATING POINT FORMAT, THESE
VALUES MUST BE WRITTEN IN THE FLOATING POINT FORMAT TO BE VALID.

These parameters must be entered into the output table prior to entering the command number.

This rung will copy 6 words containing the parameter values to the output table, LOCAL:1:O.Data[18], and the
command number, #104, to the output table, LOCAL:1:O.DATA[16]. This program is using write_flt_param_0 or write_int_param_0, based on the Metric setting, to copy the data from.
All the parameter data must be valid to prevent an error. If an error occurs, the Command Status return will contain the offset location indicating which parameter was in error.
NOTE: You cannot write a single parameter. All parameters will be written at the same time.
To write a single parameter, first do a READPARAM1 command, copy the parameters read to the output, change the parameter value you need to change, then set the command word
to initiate the write.

Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

WRITE_PARAMETERS_1 - Ladder Diagram Page 76
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:49 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

WRITE PARAMETER 1 VALUES TO MODULE
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the "READPARAM1" returns, so these words will be copied to the Read_Flt_param_1 or
Read_Int_param_1 tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return. The status returned, if not zero, will be an indication of which word location is invalid.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 104

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest Read_Flt_param_1
Length 1

COP

parameter 1 values
read from module

using floats.

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest Read_Int_param_1
Length 1

COP

parameter 1 values
read from module

using integers.

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO WRITE PARAM 1
control_bits[26]

U

START WRITE PARAM 1
control_bits[27]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the "READPARAM1" returns, so these words will be copied to the Read_Flt_param_1 or
Read_Int_param_1 tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return. The status returned, if not zero, will be an indication of which word location is invalid.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO WRITE PARAM 1
control_bits[26]

L

START WRITE PARAM 1
control_bits[27]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

ZERO - Ladder Diagram Page 77
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:49 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

ZERO THE CURRENT GROSS WEIGHT
The ZEROCMD will cause the current gross weight to be set to zero, providing the scale is not in motion, the current gross weight plus and previously zeroed gross weight does not
exceed the zero tolerance setting (set in WRITE_PARAM_0 routine), and there is not an A/D error.

This rung will initiate the Zero by sending the command number, #1 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

0

START ZERO
control_bits[29]

Move
Source 1

Dest Local:1:O.Ch1.Comman

d
 16#0000

MOV

ONS

ONE SHOT TO CLEAR
TAGS
ONE_SHOT[16]

Clear
Dest Status_Return.Cmd
 16#006a

CLR

Clear
Dest Status_Return.CmdSta

tus
 16#0000

CLR

U
ERROR_FLAG

The ZEROCMD will cause the current gross weight to be set to zero, providing the scale is not in motion, the current gross weight plus and previously zeroed gross weight does not
exceed the zero tolerance setting (set in WRITE_PARAM_0 routine), and there is not an A/D error.

This rung will initiate the Zero by sending the command number, #1 to the module. This command does not require any data sent at the same time. The command number will be
placed into the first word (LOCAL:1:O.DATA[16]) of the output table.
Here the program will also clear the Status_Return tag and ERROR_FLAG of any previous values before running this command and receiving its return values.

ZERO - Ladder Diagram Page 78
CompactLogix:MainTask:SCALE_2 10/7/2011 6:13:49 PM

Total number of rungs in routine: 3 ...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

ZERO THE CURRENT GROSS WEIGHT
This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

1 Equal
Source A Local:1:I.Ch1_NOCMD.

CommandEcho
 16#0000
Source B 1

EQU
Copy File
Source Local:1:I.Ch1_NOCMD.

CommandEcho
Dest Status_Return
Length 1

COP

command status
returned

current_metric.6
Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_flt
Length 1

COP

Default return
values with weight

in floating point
format

/
current_metric.6

Copy File
Source Local:1:I.Ch1_NOCMD.

ChannelStatus
Dest default_return_int
Length 1

COP

Default return
values with weight
in integer format

Not Equal
Source A Local:1:I.Ch1_NOCMD.

CommandStatus
 0
Source B 0

NEQ
L

ERROR_FLAG

Clear
Dest Local:1:O.Ch1.Comman

d
 16#0000

CLR

U

DO ZERO
control_bits[28]

U

START ZERO
control_bits[29]

This rung will check to see if the command has completed by checking the command word on the input data table, LOCAL:1:I.DATA[16]. If this is equal to the command number sent,
then it will copy this command word and the command status word into the Status_Return tag. This is a location used to check the status of a command for any errors that may have
occurred.
The next 14 words in the input table (words 18 - 31) will be the same data as the “NO COMMAND” condition returns, so these words will be copied to the default_return_flt or
default_return_int tag, based on the Metric setting.

If the command status returned is not zero, then an error occurred and the ERROR_FLAG tag will be set high. The user can monitor this bit to know if an error occurred and then check
the Status_Return tag for the command and status return.

Finally, the command is cleared from the output table, LOCAL:1:O.DATA[16], and any control bits are cleared.

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

2

DO ZERO
control_bits[28]

L

START ZERO
control_bits[29]

Due to the way the ONS instruction set and reset in the subroutines, putting this rung last will allow all the ONS instructions to reset properly on startup.

(End)

CompactLogix - Table of Contents Page i
10/7/2011 6:13:49 PM

...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

CompactLogix

MainTask
 SCALE_1
 C2_CAL
 Ladder Diagram ...1

 C2_SEARCH
 Ladder Diagram ...3

 CAL_HIGH
 Ladder Diagram ...5

 CAL_LOW
 Ladder Diagram ...7

 DEFAULTS
 Ladder Diagram ...9

 IT_SYSTEM_TEST
 Ladder Diagram ...11

 MainRoutine
 Ladder Diagram ...14

 READ_PARAMETER_0
 Ladder Diagram ...18

 READ_PARAMETER_1
 Ladder Diagram ...20
 READ_SERIAL_NUMBER
 Ladder Diagram ...22
 RELOAD_NON_VOLATILE
 Ladder Diagram ...24
 STABILITY_TEST
 Ladder Diagram ...26
 TARE
 Ladder Diagram ...28
 WRITE_METRIC
 Ladder Diagram ...30
 WRITE_NON_VOLATILE
 Ladder Diagram ...32
 WRITE_PARAMETERS_0
 Ladder Diagram ...34
 WRITE_PARAMETERS_1
 Ladder Diagram ...36
 ZERO
 Ladder Diagram ...38
 SCALE_2

 C2_CAL
 Ladder Diagram ...40

 C2_SEARCH
 Ladder Diagram ...42

 CAL_HIGH
 Ladder Diagram ...44

 CAL_LOW
 Ladder Diagram ...46
 DEFAULTS
 Ladder Diagram ...48
 IT_SYSTEM_TEST
 Ladder Diagram ...50
 MainRoutine
 Ladder Diagram ...53
 READ_PARAMETER_0
 Ladder Diagram ...57

 READ_PARAMETER_1
 Ladder Diagram ...59

 READ_SERIAL_NUMBER
 Ladder Diagram ...61

 RELOAD_NON_VOLATILE
 Ladder Diagram ...63
 STABILITY_TEST
 Ladder Diagram ...65

CompactLogix - Table of Contents Page ii
10/7/2011 6:13:49 PM

...ams\new sample\SAMPLE_COMPACT_LONG_DUAL_PROFILE.ACD

RSLogix 5000

 TARE
 Ladder Diagram ...67

 WRITE_METRIC
 Ladder Diagram ...69

 WRITE_NON_VOLATILE
 Ladder Diagram ...71

 WRITE_PARAMETERS_0
 Ladder Diagram ...73
 WRITE_PARAMETERS_1
 Ladder Diagram ...75

 ZERO
 Ladder Diagram ...77

